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Abstract. Alzheimer’s Disease (AD) remains a major diagnostic chal-
lenge due to the complex interplay of genomic, radiomic, and structural
factors in disease progression. While deep learning methods can classify
AD, current approaches fail to effectively combine multimodal data with
clinical knowledge, compromising both accuracy and interpretability. We
present ClinGRAD, a clinically-guided heterogeneous graph neural net-
work that combines genomic and radiomic data using connections based
on diffusion-weighted imaging (DWI) maps and gene co-expression net-
works. ClinGRAD’s contributions include: (1) a multimodal fusion ar-
chitecture that integrates validated structural and genetic connectivity
patterns for consistent biological feature analysis; (2) a multi-scale graph
framework capturing both local brain structure and global genomic path-
way relationships; (3) an attention mechanism that provides clinically rel-
evant explanations of gene-structure interactions; and (4) pathway-based
gene clustering that reveals underlying biological mechanisms and their
clinical implications. ClinGRAD outperforms existing models, achieving
an accuracy of 93.15%, distinguishing AD from control, mild cognitive
impaired, and vascular dementia patients while maintaining biological
coherence through its clinical guidance framework. The code is available
at https://github.com/BioMedIA-MBZUAI/ClinGRAD.

Keywords: Graph Neural Network · Dementia · Neuroimaging · Ge-
nomics · Multi-omics · Interpretability · DWI

1 Introduction

Alzheimer’s Disease (AD) is one of the most pressing healthcare challenges,
with its devastating impact on both individuals and society growing rapidly.
Currently, 75% of individuals with dementia worldwide remain undiagnosed, and

https://github.com/BioMedIA-MBZUAI/ClinGRAD
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cases are projected to surge to 139 million by 2050 [12]. Beyond the immediate
health impact, the economic burden is severe, with global costs exceeding $1.3
trillion annually and expected to increase nine-fold by 2050 [14].

Understanding AD’s progression requires integrating multiple biological per-
spectives. Clinical research has shown that brain connectivity maps from diffusion-
weighted imaging (DWI), a specialized MRI technique that tracks water molecule
movement along neural pathways, provide crucial insights into disease progres-
sion [9]. At the molecular level, gene co-expression networks, which capture how
genes are activated together across different brain regions, have revealed key
disease mechanisms and potential therapeutic targets [11]. These clinically vali-
dated approaches suggest that effective AD diagnosis must consider both struc-
tural brain changes and genetic interactions simultaneously.

Traditional machine learning approaches have attempted to address AD di-
agnosis through various modalities: genomic analysis to identify risk-associated
variants [11], structural MRI to detect anatomical changes [27], and clinical
assessments to track cognitive decline [7]. However, these single-modality ap-
proaches fail to capture AD’s complex pathophysiology, which spans multiple
biological scales. While deep learning has advanced multimodal integration [3],
existing fusion techniques often overlook critical cross-modal interactions.

Graph Neural Networks (GNNs) have emerged as powerful tools for medical
imaging analysis, particularly in neurological applications, where they excel at
capturing spatial and relational patterns in brain data [8]. While advanced graph
architectures have demonstrated success in neurodegenerative disease diagnosis
[13,19], the integration of multimodal data remains challenging due to fundamen-
tal differences in data structure [25,18]. Recent innovations in multimodal GNNs
and message-passing techniques have improved predictive performance [26], yet
three critical limitations persist: (1) insufficient incorporation of established clin-
ical knowledge about brain connectivity patterns, (2) inadequate modeling of
cross-scale biological interactions, and (3) limited clinical interpretability of pre-
dictions. Despite the wealth of insights generated from anatomical parcellation
studies [22] and connectivity mapping research, current deep learning models
rarely leverage this clinical expertise. Even with efforts to standardize evalua-
tion through benchmarks like NeuroGraph [17], bridging the gap between model
predictions and clinical interpretability remains a significant challenge.

We introduce ClinGRAD, a novel clinically-guided heterogeneous GNN that
addresses these challenges by integrating multimodal data with multi-scale graph
representations to capture comprehensive AD pathology. Our contributions are:

1. Clinically-Guided Multimodal Fusion: ClinGRAD proposes a heteroge-
neous GNN that fuses MRI and genetic data through validated brain connec-
tivity maps and gene co-expression, enforcing anatomical constraints during
cross-modal learning.

2. Multi-Scale Graph Representations: ClinGRAD implements a hierar-
chical graph framework that models AD through coupled biological scales:
molecular pathways, brain structures, and clinical manifestations.
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3. Clinical Interpretability: ClinGRAD identifies key genes and brain re-
gions influencing each diagnosis, providing physicians with clear evidence.

4. Pathway-Based Gene Clustering: ClinGRAD implements clinically-guided
supernodes to cluster genes in an unsupervised manner based on known bi-
ological pathways and disease mechanisms.

2 Methodology

Feature Extraction and Pre-processing. To extract structural features, we
segment brain MRI scans into 32 regions using SynthSeg [1], which outper-
forms traditional tools like FSL and FreeSurfer in handling elderly brain scans
with atrophy [16]. From these segmentations, we extract 107 radiomic features
per structure using PyRadiomics [23]. For genomic features, we process data
for 75 AD-associated genes from [6]. Crucially, we integrate established struc-
tural connectivity patterns between brain regions derived from DWI studies [20].
These DWI-derived connectivity maps serve as biologically validated priors in
our graph, ensuring message passing follows anatomical pathways. The connec-
tivity weights between regions are derived from pairwise Pearson correlation
coefficients of white matter fiber densities across subjects, as shown in Fig. 1C.

Heterogeneous Graph Structure. ClinGRAD employs a heterogeneous graph
structure G = (V,E) that models patients, genes, and brain structures as dis-
tinct node types within a clinically informed architecture. The node representa-

Fig. 1: Architecture for heterogeneous ClinGRAD model. The process involves
three main steps: (A) segmenting MRI scans using a 3D UNet model and ex-
tracting radiomics features, (B) selecting relevant genetic data, and (C) DWI
connection map. The combined data feeds into ClinGRAD (D) featuring gene-
to-gene, structure-to-structure, and patient to structure and gene interactions.



4 S. Hassan et al.

tions capture key clinical markers through 1) patient nodes (Vp) with features
Xp ∈ Rnp×dp including cognitive scores, 2) gene nodes (Vg) encoding expression
values in Xg ∈ Rng×1, and 3) structure nodes (Vs) representing radiomic features
in Xs ∈ Rns×ds , where p is the number of patients, g is the number of selected
genes, and s is the number of structures. These nodes are connected through
four biologically-informed edge types: patient-gene edges (Epg) linking patients
to expression profiles, patient-structure edges (Eps) connecting imaging features,
weighted gene edges (Egg) by co-expression scores from GeneMANIA [28], and
structure-structure edges (Ess). For Ess, we learn edge weights through a com-
bination of anatomical and connectivity information: wij = MLP([α ·dij , β ·cij ]),
where dij represents the scaled 3D Euclidean distance between regions i and j,
cij denotes the corresponding DWI connectivity strength, and α, β are learnable
parameters. The MLP aims to learn optimal edge representations that balance
spatial proximity and structural connectivity. The graph, formally represented as
G = (Vp, Vg, Vs), (Epg, Eps, Egg, Ess), uniquely integrates molecular and struc-
tural biomarkers and preserves clinically relevant relationships across modalities.

Message Passing and Aggregation. ClinGRAD implements a clinically in-
formed message-passing framework using Graph Attention Networks (GAT) [24]
to adaptively aggregate information across heterogeneous nodes while preserving
clinical relationships. For each node type τ(i), we compute attention coefficients
that reflect the importance of different node interactions:

αϕ
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exp(LeakyReLU(aTτ(i),ϕ[Wτ(i),ϕh
(t)
i ∥Wτ(i),ϕh

(t)
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The node features are then updated through multi-head attention:
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Where K is the number of attention heads, Wk
τ(i) and Wk

τ(i),ϕ are learnable
weight matrices for self and inter-type connections respectively, aτ(i),ϕ is the
attention vector for relation type ϕ, αϕ

ij is the attention coefficient between nodes
i and j, h(t)

i is node i’s feature vector at layer t, τ(i) is node i’s type, and Nϕ(i)
represents neighbors of node i connected by relation ϕ. This attention mechanism
dynamically weighs interactions based on learned patterns and clinical priors.

AD Classification. The final patient node embeddings are passed through a
classification layer with softmax activation: ŷi = softmax(Wch

(T )
i + bc), where

Wc,bc are learnable parameters and ŷi represents the predicted AD status prob-
ability distribution. The class with the highest probability is the final prediction.
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Fig. 2: Network visualization depicting gene clustering based on their functional
associations within AD pathways. The supernodes (stars) represent distinct bi-
ological clusters. Genes (blue nodes) are connected within and across clusters.

(a) Each node represents a gene,
with connections indicating signif-
icant interactions and color repre-
senting gene influence level.

(b) Each sphere represents the center of
structures, and color represents the level of
influence.

Fig. 3: Interpretability of ClinGRAD (a) Network visualization of gene inter-
actions highlighting influential genes in AD pathogenesis. (b) Corresponding
radiomics-based analysis of brain regions affected in AD.

3 Experimental Details

Datasets. We utilize ANMerge [2], the only public dataset that combines lon-
gitudinal MRI scans with comprehensive genomic data for dementia analysis.
While ADNI lacks the necessary genomic depth and multi-class labels for our
heterogeneous graph approach, ANMerge provides rich molecular profiles along-
side structural MRI data for four distinct classes: AD, Vascular Dementia (VaD),
Mild Cognitive Impairment (MCI), and Control (CTL). While we derived our
initial structural connectivity priors from [20], we validated and refined these
connection maps using DWI scans from the ethnically diverse BrainLat [15]
dataset for both AD and CTL cohorts, ensuring robust connectivity estimates.

Experimental Setup. ClinGRAD is trained using a stratified 3-fold cross-
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Fig. 4: Left: A chord diagram visualizing the high-level relationships between
supernodes biological clusters and their degree of interplay. Right: Gene-level
connections highlighting detailed interactions among genes.

validation approach to ensure a balanced representation of the classes. For train-
ing, the Adam optimizer (lr=1e−3, weight decay=5e−4) was used. Full hyperpa-
rameters are available in the code.

Ablation Study. We conduct comprehensive comparisons against both uni-
modal and multimodal approaches. For unimodal MRI analysis, we evaluate 3D
CNN and 3D ViT architectures. In multimodal settings, we compare against
recent methods, including MINDSETS [5], Flex-MOE [29], HSGO [21], and FT-
Transformer [4]. To isolate ClinGRAD’s key components, we perform ablation
studies on multimodal integration, graph edges, and message-passing mecha-
nisms.

Interpretability. ClinGRAD provides interpretable insights through three key
mechanisms: (1) GNNExplainer identifies critical subgraphs and features driving
predictions, (2) Gene supernode clustering reveals functional groups based on
co-expression patterns (Fig. 2), and (3) Cross-modal analysis maps relationships
between genetic pathways and structural changes in AD-critical regions (Fig. 3).
These complementary approaches enable clinicians to trace model decisions back
to specific biological mechanisms, offering transparent reasoning for diagnosis.

4 Results and Discussion

Comparative Performance Analysis. Our extensive experimentation, de-
tailed in Tables 1 and 2, demonstrates ClinGRAD’s superior performance across
multiple AD-related classification tasks. In the AD vs CTL classification, Clin-
GRAD achieves 98.75% accuracy, outperforming both traditional single-modality
approaches (3D CNN: 84.27%, 3D ViT: 87.12%) and recent multimodal meth-
ods (MINDSETS [5]: 97.92%). The consistent performance across these diverse
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Table 1: Performance comparison of different models across various metrics and
classification tasks across ANMerge datasets with varying data types. Hyphens
indicate unreported metrics. The standard deviation for [10,21] was not reported.

Model Data Metric AD Vs AD Vs MCI Vs AD Vs
CTL MCI CTL VaD

3D CNN MRI
Accuracy 84.27 ± 5.32 72.01 ± 5.68 77.73 ± 4.52 72.83 ± 5.62
F1-Score 80.50 ± 4.85 70.96 ± 5.12 77.89 ± 3.98 69.91 ± 4.51
Recall 79.67 ± 5.02 70.08 ± 4.21 77.77 ± 4.09 69.56 ± 3.84

Precision 81.34 ± 4.85 71.87 ± 5.20 78.02 ± 4.65 70.26 ± 4.76

3D ViT MRI
Accuracy 87.12 ± 3.12 75.43 ± 3.45 79.95 ± 3.87 75.62 ± 4.23
F1-Score 83.48 ± 4.09 73.88 ± 4.12 79.12 ± 4.05 72.45 ± 4.18
Recall 81.67 ± 3.76 72.91 ± 3.98 78.89 ± 3.92 71.98 ± 3.95

Precision 83.31 ± 4.87 74.85 ± 4.21 79.35 ± 4.15 72.92 ± 4.08

Maddalena et al. [10] MRI + Gen
Accuracy 87.40 72.20 77.80 -
F1-Score 87.20 71.00 78.60 -
Recall 87.20 72.00 79.00 -

Precision 87.90 71.00 76.50 -

Flex-MOE [29] MRI + Gen
Accuracy 92.92 ± 1.85 88.75 ± 1.82 84.95 ± 2.15 84.85 ± 2.05
F1-Score 92.85 ± 1.92 88.42 ± 1.85 83.88 ± 2.22 83.92 ± 2.12
Recall 92.76 ± 1.88 88.28 ± 1.87 84.25 ± 2.18 83.45 ± 2.08

Precision 92.94 ± 1.90 88.56 ± 1.84 83.52 ± 2.20 84.39 ± 2.15

HSGO [21] Rad + Gen
Accuracy 87.66 - 71.53 -
F1-Score 80.36 - 63.96 -
Recall 85.73 - 63.48 -

Precision 83.65 - 69.46 -

SVM Rad + Gen
Accuracy 80.46 ± 3.70 61.47 ± 3.90 69.90 ± 3.95 81.71 ± 4.29
F1-Score 80.89 ± 3.10 52.55 ± 3.85 69.85 ± 3.81 85.31 ± 5.26
Recall 83.72 ± 4.30 52.99 ± 7.24 69.89 ± 5.21 91.72 ± 4.32

Precision 78.26 ± 3.70 53.11 ± 3.36 69.83 ± 3.75 79.76 ± 3.85

MINDSETS [5] Rad + Gen
Accuracy 97.92 ± 2.15 90.69 ± 1.65 86.45 ± 2.87 89.25 ± 5.62
F1-Score 97.92 ± 3.06 90.68 ± 1.87 84.23 ± 3.84 81.13 ± 4.58
Recall 97.91 ± 2.54 90.69 ± 1.85 82.63 ± 4.02 83.61 ± 3.89

Precision 98.92 ± 3.20 90.85 ± 1.87 87.24 ± 4.11 79.21 ± 3.88

FT-Transformer [4] Rad + Gen
Accuracy 88.45 ± 2.25 82.75 ± 1.98 79.92 ± 2.75 80.85 ± 2.45
F1-Score 88.12 ± 2.31 82.42 ± 2.05 78.85 ± 2.92 79.92 ± 2.52
Recall 87.98 ± 2.28 82.28 ± 2.12 78.25 ± 2.88 79.45 ± 2.48

Precision 88.26 ± 2.35 82.56 ± 2.08 79.45 ± 2.82 80.39 ± 2.55

GCN GNN Rad + Gen
Accuracy 91.79 ± 3.62 89.27 ± 2.65 84.46 ± 2.36 85.31 ± 3.48
F1-Score 91.90 ± 3.42 90.44 ± 2.66 84.38 ± 2.38 86.22 ± 3.48
Recall 92.02 ± 2.78 91.64 ± 2.92 84.63 ± 2.63 87.15 ± 3.77

Precision 91.79 ± 2.98 89.27 ± 3.03 84.14 ± 2.81 85.31 ± 3.48

ClinGRAD (Ours) Rad + Gen
Accuracy 98.75 ± 1.54 94.25 ± 1.55 89.66 ± 2.42 89.45 ± 1.96
F1-Score 98.71 ± 1.64 92.43 ± 1.73 87.93 ± 1.91 88.54 ± 2.03
Recall 98.65 ± 1.60 92.55 ± 1.72 89.43 ± 1.85 87.82 ± 1.91

Precision 98.78 ± 1.47 93.25 ± 1.79 86.42 ± 1.85 89.73 ± 1.92

tasks, coupled with low standard deviations, suggests that ClinGRAD effectively
captures subtle disease markers that differentiate these conditions.

Multimodal Integration Benefits. The ablation studies in Table 2 reveal
crucial insights into the effectiveness of our multimodal architecture. Using ra-
diomics features alone achieves moderate accuracy, while genomic features inde-
pendently show stronger discriminative power (89.52%). The integration of both
modalities, even without structural connections, yields a substantial improve-
ment to 90.80% accuracy, representing a significant gain over single-modality
approaches. This improvement validates our hypothesis that radiomics and ge-
nomics capture complementary disease signatures. The inclusion of DWI connec-
tions further enhances performance, pushing accuracy from 92.05% to 93.15%.

Impact of Edge Connections. Our systematic evaluation of different edge
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Table 2: Breakdown of ClinGRAD results to evaluate the impact of data types,
edge connections, and corresponding performance metrics. The filled circle indi-
cates inclusion, and the empty circle indicates exclusion.
Task Data Edge Connections Classes Metrics

Gen Rad Struct DWI Co-Exp CTL MCI AD VaD Accuracy (%) F1-Score (%) Precision (%) Recall (%)

B
in

ar
y

66.21 ± 4.18 67.31 ± 4.20 68.45 ± 5.88 66.21 ± 4.18
77.13 ± 2.14 78.37 ± 1.68 79.65 ± 3.97 77.13 ± 2.14
79.45 ± 2.15 80.42 ± 1.70 81.42 ± 3.95 79.45 ± 2.15
85.49 ± 3.49 86.44 ± 3.58 87.42 ± 3.82 85.49 ± 3.49
89.52 ± 3.65 90.66 ± 3.70 91.85 ± 2.88 89.52 ± 3.65
90.80 ± 4.80 90.42 ± 4.85 90.05 ± 5.08 90.80 ± 4.80
93.95 ± 1.78 94.05 ± 1.83 94.15 ± 2.02 93.95 ± 1.78
96.15 ± 1.80 96.25 ± 1.85 96.35 ± 2.04 96.15 ± 1.80
98.25 ± 1.58 97.53 ± 1.62 97.12 ± 1.45 97.95 ± 1.58

98.75 ± 1.54 98.71 ± 1.64 98.78 ± 1.47 98.65 ± 1.60

M
u
lt

ic
la

ss

55.62 ± 2.08 44.95 ± 3.35 37.75 ± 8.12 55.62 ± 2.08
57.32 ± 5.20 53.73 ± 5.58 50.45 ± 4.48 57.32 ± 5.20
59.85 ± 5.22 56.05 ± 5.60 52.68 ± 4.50 59.85 ± 5.22
80.58 ± 3.02 81.35 ± 2.72 82.15 ± 1.88 80.58 ± 3.02
82.85 ± 2.18 81.77 ± 3.25 80.72 ± 4.45 82.85 ± 2.18
85.62 ± 2.15 85.09 ± 0.80 84.58 ± 4.42 85.62 ± 2.15
84.82 ± 1.62 81.77 ± 1.72 78.92 ± 1.88 84.82 ± 1.62
86.95 ± 1.64 83.91 ± 1.74 81.05 ± 1.90 86.95 ± 1.64
92.05 ± 3.60 92.15 ± 3.55 92.25 ± 3.48 92.05 ± 3.60

93.15 ± 3.62 93.25 ± 3.57 93.35 ± 3.50 93.15 ± 3.62

connection types reveals the crucial role of each connectivity component in Clin-
GRAD’s architecture. The addition of basic structural connections improves
accuracy by 10.92% in radiomics-only models, highlighting the importance of
modeling spatial relationships in neuroimaging analysis. The incorporation of
DWI-guided connections provides further enhancement, improving accuracy by
2.32% in radiomics-only models and by 2.20% in the full model. This improve-
ment is particularly noteworthy given the high baseline performance, indicating
that DWI-guided connections help capture subtle but clinically relevant struc-
tural patterns that might otherwise be missed. The integration of genetic co-
expression relationships provides an additional performance boost, particularly
evident in multi-class scenarios where accuracy improves from 86.95% to 93.15%.
This substantial gain demonstrates the importance of modeling gene-gene inter-
actions for distinguishing between different neurodegenerative conditions.

Interpretability. ClinGRAD highlights novel interactions between pathways,
particularly between mitochondrial dysfunction and cell signaling networks. Clin-
GRAD’s gene clustering revealed seven distinct functional modules: neuroinflam-
mation, APP/Tau pathology, vascular integrity, synaptic function, proteostasis,
mitochondrial function, and cell signaling clusters (in Fig. 4).

Technical Contributions. ClinGRAD’s superior performance is driven by sev-
eral technical innovations. First, the inclusion of DWI-guided connectivity pat-
terns provides biologically informed constraints during feature learning, where
data fusion is driven by clinically validated structural connectivity values rather
than learned arbitrarily. Second, our multi-scale hierarchical framework enables
simultaneous modeling of molecular mechanisms (gene co-expression), microscale
structural alterations (radiomic features), and macroscale brain connectivity pat-
terns (DWI edges). Third, ClinGRAD’s attention-based message-passing mech-
anism effectively models complex cross-modal interactions.
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5 Conclusion

ClinGRAD represents a significant advancement in multimodal integration for
AD classification. By leveraging heterogeneous GNN to combine genomic and
radiomic data, ClinGRAD achieves high accuracy in differentiating dementia
subtypes, which demonstrates the power of GNN in capturing complex biological
relationships, outperforming individual modalities, and showcasing the synergis-
tic effect of multimodal data integration. ClinGRAD’s interpretability is one of
its standout features, offering clear insights into gene-gene interactions and the
brain regions most impacted by AD, enhancing both its clinical applicability
and our understanding of AD pathogenesis. While promising, future work can
focus on validating ClinGRAD on larger, more diverse datasets and integrating
additional omics data types to further enhance the model’s robustness.
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