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Abstract. Longitudinal magnetic resonance imaging (MRI) is essen-
tial for diagnosing and monitoring multiple sclerosis (MS), a chronic
central nervous system disorder. Tracking brain lesion evolution over
time is essential for predicting MS progression, yet this process is time-
consuming and subject to intra- and interobserver variability. While deep
learning models such as convolutional neural networks (CNNs) and vi-
sion transformers (ViTs) have been applied to lesion detection, they of-
ten struggle to fully capture spatial, structural and temporal relation-
ships. Vision graph neural networks (ViGs) present a novel approach
with the potential to improve performance in these tasks by effectively
capturing relational and structural information. We introduce DEFUSE-
MS, a Deformation Field-Guided Spatiotemporal ViG-Based Framework
for detecting MS new T2-weighted lesions. The framework features a
Heterogeneous Spatiotemporal Graph Module (HSTGM), which func-
tions as both an encoder and decoder. Evaluated on the MSSEG-II
dataset, DEFUSE-MS achieves state-of-the-art performance with a le-
sion detection F1 score of 0.65, sensitivity (SensL) of 0.74, positive pre-
dictive value (PPVL) of 0.65, and a mean segmentation Dice score of
0.55, outperforming the state-of-the-art methods. These results highlight
DEFUSE-MS’s efficacy in MS new lesion detection. The code is available
at https://github.com/BioMedIA-MBZUAI/DEFUSE-MS.

Keywords: Brain · MRI · Multiple Sclerosis · Deep Learning · Spa-
tiotemporal Learning · Vision Graph Neural Network

1 Introduction

Multiple Sclerosis (MS) ranks among the leading causes of neurological impair-
ment in adults in the present day, affecting nearly 3 million people worldwide

https://github.com/BioMedIA-MBZUAI/DEFUSE-MS
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[9]. Early diagnosis is crucial for timely intervention, which can help slow dis-
ease progression. Magnetic resonance imaging (MRI) plays a key role in both
diagnosing and monitoring MS, with the appearance of new T2-weighted (T2-w)
lesions serving as a critical predictor of disease activity [26]. Manually tracking
these changes over time is labor-intensive, error-prone, and subject to intra- and
interobserver variability [1]. As a result, there is a growing demand for auto-
mated methods that offer fast, reliable, and consistent assessments, particularly
for measuring lesion volumetric changes over time.

MS lesion analysis encompasses both lesion detection in single MRI scans
and change detection across longitudinal scans. These lesions manifest through
tissue transformation (intensity shifts) and deformation (changes in adjacent
tissue) [14]. Change detection methodologies typically follow two approaches:
intensity-based comparisons [23] and deformation-based analyses, which use non-
rigid registration deformation fields (DFs) for new T2-w lesion identification [2].
Hybrid approaches have emerged that combine both methodologies to improve
accuracy [20,22]. In 2021, the MSSEG-II challenge, organized by MICCAI, was
launched to compare automated solutions for the detection of MS new lesions
appearing at the second time point of two FLAIR images of the patient [5].
Recent studies using this dataset have reported their performance exclusively
through cross-validation on the training set, without evaluating on the test cases
[29,24]. While convolutional neural networks (CNNs), particularly U-Net [19],
have revolutionized medical image segmentation, their local nature limits global
context modeling [28]. Transformer-based architectures such as TransUNet [4]
and UNETER [11] address this limitation but require extensive training data
[8]. However, vision graph neural networks (ViGs) offer a promising alternative
by representing images as graphs, effectively combining CNN’s local feature ex-
traction with Transformer-like global context modeling through graph neural
networks (GNNs) [10].

We introduce DEFUSE-MS, Deformation Field-Guided Spatio-temporal ViG-
based framework for MS new T2-w Lesion Detection. We frame the problem of
detecting MS new lesions as a heterogeneous spatiotemporal GNN employing an
encoder-decoder architecture. The proposed model utilizes baseline and follow-
up MRI scans to construct a heterogeneous spatiotemporal graph, where graph
nodes are connected by two types of spatial edge and one type of temporal edge.
Temporal edges are further augmented with learned DF embeddings as temporal
edge attributes, capturing lesion evolution patterns that are clinically relevant
for assessing disease progression. This approach effectively captures spatial rela-
tionships within individual scans and temporal dynamics between the two-time
points, allowing a comprehensive analysis of lesion evolution. To the best of
our knowledge, this is the first study to leverage ViGs for 3D medical image
segmentation, marking a significant advancement in the field. Our key contribu-
tions include: (1) introducing a novel formulation for MS new lesion detection in
3D MRI as a heterogeneous spatiotemporal GNN within an encoder-decoder
framework; (2) integrating learned DF embeddings as edge attributes in
the heterogeneous spatiotemporal graph, introducing a robust representation



DEFUSE-MS: DF-Guided STG Framework for MS New Lesion Detection 3

Fig. 1: Overview of the DEFUSE-MS framework for MS new T2-w lesion de-
tection. (a) DEFUSE-MS Architecture: The proposed network consists of
a U-shaped encoder-decoder model. The inputs include baseline and follow-up
images along with the DF, which nonlinearly registers the baseline image to the
follow-up image. (b) Graph Construction: Illustrates how the heterogeneous
spatio-temporal graph is reconstructed from the baseline and follow-up feature
maps. (c) Components: Details of the DEFUSE-MS components.

that captures the clinical manifestation of disease progression over time, and (3)
achieving state-of-the-art performance on the MSSEG-II challenge test set.

2 Methodology

DEFUSE-MS is a 3D patch-wise U-shaped encoder-decoder model, as depicted
in Fig. 1 (a). This model processes FLAIR modality images from baseline and
follow-up scans along with the DF to generate the new T2-w lesion segmentation
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mask. Its structure comprises an encoder, a bottleneck, a decoder, and skip
connections. Key components include stem blocks (convolutional modules that
generate initial feature maps, serving as the foundation for constructing graph
node features and temporal edge attributes), a Heterogeneous Spatio-Temporal
Graph Module (HSTGM), feedforward networks (FFNs), and downsample and
upsample modules. The learned DF embeddings are shared between the encoder
and decoder, facilitating effective spatial information integration.
Graph Construction. Image stem and DF stem generate output feature maps
(FMapsB, FMapsF ), and FMapsDF , respectively, all in RC×D×H×W , to form
the Heterogeneous Spatio-Temporal Graph (HSTG). In Fig. 1 (b), the baseline
feature maps (FMapsB) and follow-up feature maps (FMapsF ) are treated as
unordered node sets: VB = {vb1, vb2, . . . , vbn} and VF = {vf1, vf2, . . . , vfn}, each
in RC×DHW , respectively. These nodes form the vertices of the heterogeneous
graph. For any baseline node vbi ∈ RC and follow-up node vfi ∈ RC , K nearest
neighbors, N (vbi) and N (vfi), are selected via Euclidean distance between fea-
tures. The HSTG includes three edge types: 1) baseline spatial edges (EB) link
nearest neighbors in the baseline, 2) follow-up spatial edges (EF ) link nearest
neighbors in the follow-up and 3) temporal edges (ET ) link corresponding nodes
between baseline and follow-up. Spatial edges es−ji from vj to vi have attributes
derived from the Chebyshev distance of their spatial coordinates and the Eu-
clidean distance of their feature vectors (es−ji ∈ R2). Temporal edges et−ii,
directed from vbi to vfi, adopt DF-derived learned embeddings (et−ii ∈ RC).
The HSTG is expressed as GH = ((VB ,VF ), (EB, EF , ET )).
Heterogeneous Spatiotemporal Graph Module (HSTGM). The HSTGM
serves as a core component of the DEFUSE-MS network, functioning as both
the encoder and decoder block. It includes a 3D convolutional layer followed
by two Heterogeneous Spatio-Temporal Graph Neural Network (HSTGNN) lay-
ers. Each HSTGNN layer is followed by an FFN to enhance feature transfor-
mation capacity and mitigate the over-smoothing effect. Each HSTGNN layer
comprises three Max-Relative Graph Neural Networks (MR-GNNs): Two spa-
tial MR-GNNs (FB, FF ) independently aggregate and update the baseline and
follow-up graphs (GB,GF ) via spatial edges, and a temporal MR-GNN (FT ) that
aggregates and updates features between timepoints via temporal edges.

G′
B = FB(GB,WB), G′

F = FF (GF ,WF ) G′
H = FT ((G′

B,G′
F ),WT ), (1)

where WB, WF and WT are the learnable weights of the MR-GNNs FB, FF ,
FT , respectively.

For a graph G = G(X , E), a target node feature xi ∈ RC , a source node feature
xj ∈ RC , and an edge feature eij ∈ RE , the aggregation operation integrates the
features of neighboring nodes N (xi) using the edge features. The updated node
feature x′

i is given by:

x′
i = h

(
xi, g

(
xj ,N (xi);Waggregate

)
;Wupdate

)
, (2)

where Waggregate and Wupdate are the learnable weights of the aggregation and
update operations, respectively and h is a nonlinear activation function. To im-
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prove the expressiveness of the Max-Relative convolution layer, edge attributes
are incorporated using a conditional gating mechanism. This is mathematically
formulated as:

g(·) = x′′
i = [xi,max [wji · ({xj − xi | xj ∈ N (xi)})]] , wji = α

(
WGat · eji

)
. (3)

Here, WGat ∈ RC×E and α denotes a softmax or sigmoid function. The final
update operation is given by:

h(·) = x′
i = x′′

i Wupdate + bh, (4)

where bh represents the bias term.

3 Experimental Setup

Dataset. This study utilizes the MSSEG-II challenge dataset, which includes
3D FLAIR scans from 100 MS patients across 15 MRI scanners [5]. The dataset
consists of 40 training scans (11 scans without new lesions) and 60 test scans (28
were originally labeled as lesion-free). For the test cases, the challenge organizers
updated the ground truth (GT), introducing new lesions in two previously lesion-
free cases while also increasing the number and volume of new lesions in 32 cases.
Thus, the revised test set includes 35 cases with new lesions and 25 without. This
study uses the updated consensus GT.
Pre-processing. The MSSEG-II dataset’s rigidly registered FLAIR longitu-
dinal scans were preprocessed, including brain extraction via ROBEX, N4 bias
field correction with ITK, and histogram matching for intensity normalization
of the training set [16]. The Demons algorithm was applied to compute deforma-
tion fields between time points, capturing only lesion changes due to prior rigid
registration [25].
Implementation Details. We trained the network using 3D patches of size
16×16×16 with a step size of 8×8×8, extracted from the FLAIR modality of
the MSSEG-II challenge’s training set (40 patient volumes). To address the class
imbalance between lesion and non-lesion voxels, patches centered on each GT
voxel were included. The patches were split into 80% for training and 20% for
validation. The model was trained for 100 epochs with early stopping (patience
of 5), using a batch size of 32 and a random seed of 42 on an NVIDIA A100
GPU with PyTorch Geometric. During inference, a sliding window of 16×16×16
patches is applied.
Evaluation. DEFUSE-MS was evaluated in two scenarios to thoroughly as-
sess its performance. First, new lesion detection accuracy was analyzed using
detection and segmentation metrics on 35 patients (out of 60) who exhibited
at least one new lesion in the follow-up testing set. The evaluation metrics in-
cluded lesion detection F1-score, sensitivity (SensL), precision (PPVL), and the
segmentation dice score (DSC). Second, the specificity of the method was as-
sessed using data from 25 patients with no new T2-w lesions by calculating the
mean volume (in mm3) of falsely predicted lesions. All metrics were computed
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Table 1: Lesion detection and segmentation results on the MSSEG-II challenge
test set: Comparison between our proposed method and alternative approaches.
The results are reported as the mean ± standard deviation. Only from the
model’s output, small lesions, smaller than 3 mm3, were excluded from F1-score
computations.
Method F1-score ↑ SensL ↑ PPVL ↑ DSC ↑ No.FPs ↓ Vol. mm3 ↓

(w/ DF)
DEFUSE-MS (DFLearned, w/ Spatial) 0.65 ± 0.30 0.74 ± 0.28 0.65 ± 0.33 0.55 ± 0.24 0.12 ± 0.33 1.50 ± 4.77
DEFUSE-MS (DFLearned, w/o Spatial) 0.64 ± 0.32 0.70 ± 0.31 0.63 ± 0.35 0.54 ± 0.25 0.28 ± 1.02 2.13 ± 8.62
DEFUSE-MS (DFMax, w/ Spatial) 0.56 ± 0.29 0.68 ± 0.29 0.57 ± 0.33 0.50 ± 0.26 0.88 ± 2.40 20.66 ± 79.89
DEFUSE-MS (DFMax, w/o Spatial) 0.55 ± 0.33 0.64 ± 0.33 0.57 ± 0.36 0.50 ± 0.27 0.20 ± 0.82 0.96 ± 4.12
SegFormer3D [18] 0.40 ± 0.36 0.49 ± 0.36 0.44 ± 0.41 0.36 ± 0.28 0.48 ± 1.66 5.30 ± 22.26
SlimUNETR [17] 0.45 ± 0.35 0.44 ± 0.36 0.55 ± 0.42 0.39 ± 0.31 0.44 ± 1.83 4.65 ± 19.44
UNeXt [27] 0.48 ± 0.35 0.57 ± 0.35 0.52 ± 0.39 0.46 ± 0.29 0.28 ± 0.84 2.60 ± 7.79
UNETER [11] 0.41 ± 0.33 0.57 ± 0.35 0.41 ± 0.36 0.41 ± 0.27 0.44 ± 0.96 3.32 ± 7.93
TransUNet [4] 0.42 ± 0.35 0.51 ± 0.37 0.44 ± 0.38 0.37 ± 0.28 1.60 ± 4.04 27.57 ± 83.75
UNet [19] 0.37 ± 0.35 0.38 ± 0.36 0.43 ± 0.39 0.32 ± 0.28 0.08 ± 0.40 0.27 ± 1.33

(w/o DF)
DEFUSE-MS (NoDF, w/ Spatial) 0.55 ± 0.34 0.63 ± 0.35 0.58 ± 0.37 0.49 ± 0.27 0.20 ± 0.58 5.76 ± 18.07
DEFUSE-MS (NoDF, w/o Spatial) 0.55 ± 0.35 0.59 ± 0.35 0.58 ± 0.37 0.46 ± 0.28 0.0 ± 0.0 0.0 ± 0.0
SegFormer3D [18] 0.43 ± 0.36 0.49 ± 0.37 0.48 ± 0.40 0.40 ± 0.30 0.80 ± 3.40 14.19 ± 68.26
SlimUNETR [17] 0.48 ± 0.36 0.59 ± 0.36 0.51 ± 0.39 0.44 ± 0.31 1.32 ± 4.60 37.71 ± 157.65
UNeXt [27] 0.55 ± 0.34 0.59 ± 0.37 0.57 ± 0.37 0.46 ± 0.30 0.04 ± 0.20 0.15 ± 0.77
UNETER [11] 0.46 ± 0.33 0.65 ± 0.32 0.45 ± 0.36 0.42 ± 0.27 1.68 ± 4.71 39.44 ± 169.41
TransUNet [4] 0.45 ± 0.35 0.57 ± 0.36 0.45 ± 0.37 0.40 ± 0.27 1.44 ± 5.23 47.11 ± 211.99
UNet [19] 0.27 ± 0.36 0.29 ± 0.38 0.34 ± 0.41 0.25 ± 0.27 0.12 ± 0.60 1.14 ± 5.70

(SOTA: Results are reported on the outdated test set (60 cases: 32 with new lesions and 28 without) [7])
mediaire-B [12] 0.54 ± 0.35 0.69 ± 0.39 0.49 ± 0.36 0.44 ± 0.30 0.54 ± 0.84 29.23 ± 58.31
MedICL [13] 0.50 ± 0.33 0.74 ± 0.37 0.45 ± 0.34 0.51 ± 0.29 0.54 ± 0.84 12.71 ± 39.68
VicorobCascade [21] 0.50 ± 0.37 0.53 ± 0.40 0.52 ± 0.39 0.42 ± 0.32 0.46 ± 1.90 11.56 ± 41.10
Empenn [15] 0.53 ± 0.32 0.59 ± 0.37 0.53 ± 0.33 0.42 ± 0.26 0.29 ± 0.46 4.26 ± 9.0
SNAC [3] 0.51 ± 0.35 0.66 ± 0.40 0.47 ± 0.35 0.48 ± 0.29 0.32 ± 0.94 5.73 ± 19.75
Expert 1 0.68 ± 0.34 0.61 ± 0.36 0.83 ± 0.35 0.61 ± 0.32 0.0 ± 0.0 0.0 ± 0.0
Expert 2 0.58 ± 0.36 0.53 ± 0.36 0.73 ± 0.39 0.54 ± 0.33 0.0 ± 0.0 0.0 ± 0.0
Expert 3 0.58 ± 0.35 0.50 ± 0.36 0.77 ± 0.40 0.55 ± 0.34 0.0 ± 0.0 0.0 ± 0.0
Expert 4 0.49 ± 0.37 0.41 ± 0.37 0.70 ± 0.45 0.44 ± 0.34 0.0 ± 0.0 0.0 ± 0.0

using the animaSegPerfAnalyzer from the Anima toolbox, as described in [6].
Ablation Studies. We conducted ablation studies to evaluate the contribu-
tions of different components. DEFUSE-MS (DFLearned), which utilizes learned
DF embeddings as temporal edge attributes, was compared with two variants:
DEFUSE-MS (DFMax), which applies max pooling to the DF without learning
embeddings, and DEFUSE-MS (NoDF), which does not use any temporal edge
attributes. These comparisons highlight the importance of learned DF embed-
dings in capturing temporal dependencies. Additionally, we evaluated the role
of spatial edge attributes by testing the model with and without them.

4 Results and Discussion

For quantitative results, Table 1 shows the F1-score, SensL, PPVL, and DSC of
the DEFUSE-MS and several baseline models [18,17,27,11,4,19]. DEFUSE-MS
(DFLearned) significantly outperformed the other two variants (DFMax and
NoDF) and all the other CNN-based and Transformer-based models (p < 0.05).
Although many baselines lack temporal modeling, they are widely used in med-
ical segmentation, highlighting DEFUSE-MS’s strength in capturing longitudi-
nal dynamics. For qualitative results, Fig. 2 presents a visual example of the
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Fig. 2: Examples of new lesion detection. For the predicted segmentation masks,
green, red, and blue represent true positives, false positives, and false negatives,
respectively. The last row presents a case where only DFLearned detects false
positives; however, we suspect the segmented region to be a new lesion, two of
the human raters also classify this region as a new lesion.

DEFUSE-MS model’s performance. Each column corresponds to the baseline
image, follow-up image, segmentation results from the DEFUSE-MS approaches
(NoDF, DFMax, DFLearned), and the GT mask.
Learned DF Embeddings. The impact of different DF representations on
lesion detection performance was evaluated by comparing two variants of the
DEFUSE-MS model: one using maxpooled DF (DFMax) and the other employ-
ing learned DF embeddings (DFLearned). The model with learned DF embed-
dings significantly outperformed the maxpooled variant, demonstrating superior
F-score, SensL, PPVL and DSC in detecting new T2-w lesions (p < 0.05). This
performance gap can be attributed to the information loss associated with max-
pooling, which reduces spatial resolution and discards fine-grained deformation
patterns crucial for accurate lesion localization. In contrast, learned embeddings
adaptively capture complex spatial and temporal relationships, enhancing the
model’s ability to distinguish between lesions and normal anatomical variations.
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Additionally, the learned embeddings provide richer contextual features that
effectively support the spatiotemporal GNN layers in modeling temporal depen-
dencies across follow-up scans. These findings emphasize the value of context-
aware, learnable representations over static pooling operations, especially in de-
tecting subtle pathological changes over time.

Spatial Edge Attributes. The impact of adding the Chebyshev distance as a
spatial edge attribute in DEFUSE-MS varied depending on the temporal edge
attribute used. In DEFUSE-MS (DFMax) and DEFUSE-MS (NoDF), which uti-
lize maxpooled DF and no DF, respectively, the addition of the spatial edge at-
tribute increased sensitivity (SensL) by enhancing spatial context and detecting
subtle lesion boundaries. However, in follow-up cases without new lesions, both
models showed an increase in the number and volume of false positives (FPs).
This can be attributed to the over-sensitivity of the spatial edge attribute to
anatomical variations, leading to the misclassification of normal structures as
lesions. The lack of fine-grained temporal context in DFMax and the absence
of temporal edge attributes in NoDF caused over-reliance on spatial discon-
tinuities, contributing to FPs. In contrast, DEFUSE-MS (DFLearned), which
uses learned DF embeddings, outperformed the other models across all met-
rics, including reducing FPs and their volumes in no-lesion cases. The learned
embeddings effectively captured complex temporal deformations, enabling the
model to distinguish between true pathological changes and normal anatomical
variability. The synergy between the learned temporal context and the spatial
edge attribute allowed the model to better generalize across patients, maintain-
ing high sensitivity and precision. These results emphasize the value of using
learnable temporal embeddings in combination with spatial edge attributes to
balance sensitivity and specificity in lesion detection.

Model Architecture Comparison. Our study found that the integration of
the DF into different model architectures yields varying results depending on the
model type. In attention-based models, stacking the DF with baseline/follow-up
images leads to decreased performance due to information overload, noise, and
misalignment, which confuses the attention mechanism and hinders its ability
to focus on relevant features. These models, optimized for learning contextual
relationships within image features, struggle with the spatial transformations
captured by the DF. In contrast, the UNet architecture, with its encoder-decoder
structure and skip connections, significantly improves performance when stack-
ing the DF with images (p < 0.05). The UNet effectively fuses spatial informa-
tion from the DF with image features, leveraging its ability to maintain spa-
tial consistency and learn local and global dependencies. Compared to UNet,
DEFUSE-MS (W/ DF) may have more false positives due to over-segmentation,
but it still achieves better overall detection metrics like Dice and F1. In con-
trast, DEFUSE-MS effectively integrates the DF as an edge attribute within
spatiotemporal GNN layers, enhancing temporal dependency learning and spa-
tial relationship modeling, thus benefiting from the DF. These findings suggest
that targeted integration methods, such as using the DF as an edge attribute,
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are more effective than direct stacking for leveraging spatial transformations in
lesion detection tasks.

5 Conclusion

We proposed DEFUSE-MS, a novel approach for MS new lesion detection, which
formulates lesion identification in 3D MRI as a heterogeneous spatiotemporal
GNN within an encoder-decoder framework. By integrating learned DF embed-
dings as temporal edge attributes, DEFUSE-MS effectively captures spatial and
temporal dependencies, improving sensitivity and precision. This approach out-
performs traditional DF representations and addresses the challenges faced by
attention-based models, which struggle with information overload and misalign-
ment. DEFUSE-MS adapts to complex spatiotemporal changes, offering more
accurate lesion localization and demonstrating the superiority of learned DF
embeddings for automated MS new lesion detection in 3D MRI. Future work
will enhance DEFUSE-MS by integrating more imaging modalities and improv-
ing generalizability across diverse populations.
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