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Abstract—Malaria remains one of the most life-threatening
infectious diseases worldwide. Recent advancements in deep
learning and computer vision have shown significant promise
in automating the analysis of medical images, including malaria-
infected blood smears. While hierarchical classification, a ma-
chine learning approach that organizes classes into a hierarchy
from broad categories to specific subtypes, has proven effective
in various domains, its application to malaria parasite staging
at the single-cell level remains underexplored. In this work, we
present PlasmoStage, a novel hierarchical deep learning frame-
work for hierarchical malaria parasite staging. Our approach
leverages the DinoBloom foundation model, a state-of-the-art self-
supervised model for single-cell image analysis in hematology, as
a robust feature extractor. By fine-tuning these features using
fully connected layers, PlasmoStage surpasses traditional flat
classification models and baseline hierarchical methods. Our con-
tributions are threefold: (1) We introduce a biologically inspired
hierarchical classification framework that improves diagnostic
accuracy and interpretability by aligning with the natural pro-
gression of malaria parasites. (2) We demonstrate the efficacy
of foundation model-based feature extraction, achieving state-
of-the-art performance with minimal fine-tuning. (3) We pro-
vide a comprehensive evaluation on publicly available datasets,
including ablation studies and benchmarking against existing
methods. Experimental results demonstrate that PlasmoStage
effectively differentiates between uninfected and infected cells
(Accuracy = 98.66%, F1-score = 98.38%), accurately identifies
parasite species—Plasmodium falciparum or Plasmodium vivax
(Accuracy = 98.75%, F1-score = 98.99%), and outperforms
conventional flat and hierarchical classification approaches in
parasite staging (Vivax staging: Accuracy = 85.90%, F1-score
= 85.71%; Falciparum staging: Accuracy = 96.92%, F1-score
= 96.62%). This work highlights the potential of leveraging
foundation models for automated malaria diagnosis and staging.

Index Terms—Malaria Parasite, Hierarchical Classification,
Foundation Model, Deep Learning

I. INTRODUCTION

Malaria remains one of the most life-threatening infectious
diseases worldwide. According to the latest World Malaria
report, there were 263 million cases of malaria in 2023
compared to 252 million cases in 2022. The estimated number
of malaria deaths was 597,000 in 2023 compared to 600,000 in
2022 [1]. Malaria is a life-threatening disease that is spread to
humans by some types of mosquitoes. There are four species
of Plasmodium that are known to cause malaria in humans,
with P. falciparum and P. vivax posing the most significant
health threats. P. falciparum is the most lethal malaria parasite
and is highly prevalent on the African continent, whereas
P. vivax is the dominant species in most regions outside of
sub-Saharan Africa. The remaining three species capable of
infecting humans are P. malariae and P. ovale, the latter of
which is a zoonotic parasite that can be transmitted from
macaques to humans [2].

The accurate and timely diagnosis of malaria is critical
for effective treatment and disease management. Traditional
diagnostic methods, such as microscopy and rapid diagnostic
tests (RDT), are widely used but suffer from limitations,
including reliance on expert microscopists, variability in inter-
pretation, and limited sensitivity for low parasitemia cases [3].
Recent advances in deep learning and computer vision have
shown great promise in automating the analysis of medical
images, including malaria blood smears. Convolutional neural
networks (CNN) and transformer-based models have been
successfully applied to tasks such as parasite detection, species
classification, and identification of stages of life [4], [5].
However, most existing approaches treat malaria classification
as a flat, multi-class problem, ignoring the inherent hierar-
chical structure of the task. For instance, a blood cell image



must first be classified as infected or uninfected, followed
by species identification (P. falciparum or P. vivax), and
finally, the parasite’s developmental stage (ring, trophozoite,
schizont, or gametocyte). Hierarchical classification not only
aligns with the biological reality of malaria, but also improves
the interpretability and performance of the model by taking
advantage of the relationships between classes [6].

In this work, we propose a hierarchical deep learning
framework for the classification of malaria parasites from
single blood cell images. Our approach leverages the Di-
noBloom foundation model, a state-of-the-art self-supervised
foundation model for single cell images in hematology, as a
feature extractor. The extracted features are fine-tuned using
fully connected layers before being passed to a hierarchical
classification pipeline. The pipeline consists of three stages:
1) binary classification of cells as infected or uninfected,
2) species classification for infected cells (P. falciparum or
P. vivax), and 3) stage classification for each species (ring,
trophozoite, schizont, or gametocyte).

By incorporating hierarchical relationships into the classi-
fication process, our method achieves superior performance
compared to flat classification approaches. The contributions
of this work are threefold.

1) We introduce a hierarchical classification framework
tailored to the biological structure of malaria parasites,
allowing a more accurate and interpretable diagnosis.

2) We demonstrate the effectiveness of a foundation model
as a feature extractor for malaria image analysis, achiev-
ing state-of-the-art performance with minimal fine-
tuning.

3) We provide a comprehensive evaluation of our approach
in publicly available datasets, including ablation studies
and comparisons with existing methods.

The rest of this paper is structured as follows: Section II
provides a review of related work on malaria classification
and hierarchical deep learning. Section III details the datasets,
model architecture, and training methodology. Section IV
presents the experimental results and discussion. Finally, Sec-
tion V summarizes the conclusions of the study.

II. RELATED WORK

A. Malaria Parasite Classification

The automation of malaria diagnosis using machine learning
and deep learning techniques has been an active area of
research over the past decade. Early approaches relied on
hand-crafted features extracted from blood smear images,
such as texture, color, and shape descriptors, combined with
traditional machine learning classifiers such as support vector
machines (SVMs) and random forests [7], [8]. Although these
methods demonstrated promising results, their performance
was limited by the quality of the hand-crafted features and
their inability to generalize across diverse datasets.

With the advent of deep learning, CNNs have become the
defacto standard for malaria image analysis. Rajaraman et al.
[9] proposed a CNN-based model to classify malaria-infected

cells, achieving high precision in the publicly available Malaria
Cell Image Dataset. Similarly, Liang et al. [4] developed
a deep learning framework to detect and segment malaria
parasites in blood smear images, demonstrating the potential
of CNNs for automated diagnosis. More recently, transformer-
based models, such as Vision Transformers (ViTs), have been
applied to medical image analysis tasks, including malaria
classification, due to their ability to capture long-range de-
pendencies and global context [10].

Despite these advancements, most existing methods treat
malaria classification as a flat multi-class problem, ignoring
the inherent hierarchical structure of the task. For instance,
a blood cell image must first be classified as infected or
uninfected, followed by species identification (P. falciparum or
P. vivax), and finally, the parasite’s developmental stage (ring,
trophozoite, schizont, or gametocyte). This flat classification
approach not only fails to take advantage of the relationships
between classes but also limits the interpretability and clinical
utility of the results.

B. Hierarchical Deep Learning

Hierarchical classification is a well-studied problem in
machine learning, with applications in domains such as text
classification, image recognition, bioinformatics and leukemia
[6], [11], [12]. The key idea is to organize classes into a hier-
archy, where higher-level classes represent broader categories,
and lower-level classes represent more specific subcategories.
By incorporating hierarchical relationships into the classifi-
cation process, models can improve their performance and
interpretability. In the context of deep learning, hierarchical
classification has been successfully applied to various tasks,
including medical image analysis. For example, Li et al. [13]
proposed a hierarchical CNN for skin lesion classification,
where the model first predicts the general type of lesion
(e.g., benign or malignant) and then refines the prediction to
a specific subtype (e.g., melanoma or nevus). However, the
application of hierarchical deep learning to the classification
of malaria parasites remains underexplored. Most existing
methods focus on flat classification, treating each class as
independent and ignoring the relationships between them.
This limits their ability to capture the biological structure of
malaria parasites and hinders their performance in real-world
scenarios.

C. Foundation Models for Feature Extraction

Foundation models have emerged as powerful tools for
feature extraction in various domains, including natural lan-
guage processing and computer vision [14]. These models
are pre-trained on large-scale datasets using self-supervised
learning techniques, enabling them to learn rich, generalizable
representations that can be fine-tuned for specific tasks. In the
context of medical image analysis, foundation models have
shown great promise for tasks such as disease diagnosis, organ
segmentation, and image retrieval [15]. The use of foundation
models for malaria parasite classification is still in its early
stages. Most existing methods rely on CNNs or ViTs trained



from scratch on small, domain-specific datasets, which limits
their generalization ability. By leveraging a foundation model
like DinoBloom [16] as a feature extractor, our approach
addresses this limitation and achieves state-of-the-art perfor-
mance with minimal fine-tuning.

III. METHODOLOGY

A. Dataset

Our study utilizes two publicly available datasets: 1) Broad
Bioimage Benchmark Collection (BBBC041v1): This dataset
contains thin blood smear images of Plasmodium vivax-
infected human blood samples, including both healthy cells
and cells infected with P. vivax parasites [2]. 2) MP-IDB
(Malaria Parasite Image Database): This dataset provides thin
blood smear images with healthy cells as well as cells infected
by Plasmodium vivax and Plasmodium falciparum parasites,
offering a more diverse set of samples for training and analysis
[3]. These datasets form the foundation for training and
validating our hierarchical classification model. The images
are annotated by expert parasitologists and categorized into
the following classes:

1) Uninfected: Blood cells without any signs of malaria
infection.

2) Infected: Blood cells infected with malaria parasites,
further divided into:

• Plasmodium falciparum: Subdivided into ring,
trophozoite, schizont, and gametocyte stages.

• Plasmodium vivax: Subdivided into ring, tropho-
zoite, schizont, and gametocyte stages.

The dataset is highly imbalanced, with a predominance of
healthy cells and an overrepresentation of the ring stage in both
Plasmodium vivax and Plasmodium falciparum, as well as the
trophozoite stage in P. vivax. Fig. 1 illustrates representative
samples of extracted cells, showcasing healthy cells, P. vivax
stages (Ring, Trophozoite, Schizont, Gametocyte), and P.
falciparum stages (Ring, Trophozoite, Schizont, Gametocyte).

B. Hierarchical Classification Pipeline

The overall model architecture is illustrated in Fig. 2. The
proposed model leverages DinoBloom, a foundation model
pre-trained on single-cell hematological images from diseases
unrelated to malaria, as a feature extractor. In this transfer
learning setup, the pre-trained weights of DinoBloom are
initially frozen to preserve the generalizable representations
learned from diverse hematological data. The model is then
fine-tuned on the malaria dataset, allowing it to adapt these fea-
tures to the specific task of malaria parasite classification. This
approach effectively combines the broad generalization capa-
bility of DinoBloom with task-specific adaptation, enhancing
classification performance while mitigating overfitting. The
extracted features are subsequently passed through a series
of fully connected layers that are fine-tuned to optimize the
hierarchical classification pipeline.

This pipeline is structured into three stages, reflecting the
inherent biological hierarchy of malaria infection. First, the

Fig. 1. Examples of extracted cells: The first row shows healthy cells. Rows
2-5 display the stages of Plasmodium vivax (Ring, Trophozoite, Schizont,
and Gametocyte, respectively). Rows 6-9 illustrate the stages of Plasmodium
falciparum (Ring, Trophozoite, Schizont, and Gametocyte, respectively).

model classifies the cell as either uninfected or infected. If the
cell is infected, the model then determines the parasite species
(P. falciparum or P. vivax). Finally, the developmental stage
of the parasite (ring, trophozoite, schizont, or gametocyte) is
identified. This hierarchical classification approach not only
aligns with the biological progression of malaria infection
but also enhances model interpretability and performance by
leveraging the dependencies between classes and reducing
error propagation.

• Stage 1 (Infection Head – Uninfected vs. Infected Clas-
sification): This stage consists of a binary classification
layer with a sigmoid activation function, which deter-
mines whether the input cell is uninfected or infected. The
output probability guides the subsequent classification
stages, ensuring that only infected cells proceed for
further analysis.

• Stage 2 (Parasite Species Head – Plasmodium falci-
parum vs. Plasmodium vivax Classification): If the cell
is classified as infected in Stage 1, the extracted feature
vector is forwarded to a second binary classification layer
with a sigmoid activation function. This layer predicts the
parasite species, distinguishing between P. falciparum and
P. vivax.

• Stage 3, 4 (Parasite Developmental Stage Classifi-
cation – Ring, Trophozoite, Schizont, Gametocyte):
Based on the species identified in Stage 2, the feature vec-



Fig. 2. Architecture of the proposed model for hierarchical malaria parasite
classification, featuring multiple classification heads for infection status (un-
infected/infected), parasite type (Plasmodium vivax/Plasmodium falciparum),
and parasite stage (Ring, Trophozoite, Schizont, Gametocyte).

tor is processed through a multi-class classification layer
with a softmax activation function. This layer predicts
the parasite’s developmental stage, classifying it as ring,
trophozoite, schizont, or gametocyte. The hierarchical
structure of the classification ensures biologically con-
sistent predictions while leveraging the relationships be-
tween infection status, species, and developmental stages.

C. Implementation Details

The proposed model was trained and evaluated using strati-
fied K-fold cross-validation with K = 5 to maintain balanced
class distributions across all folds. The dataset was partitioned
into five folds, where each fold served as the test set once,
while the remaining four folds were used for training and
validation. Within each training fold, data was split into
training (80%) and validation (20%) subsets, ensuring robust
and reliable results by mitigating potential biases from data
splits. To address the class imbalance present in the dataset,
we employed multiple strategies. First, stratified sampling
was used during the training-validation splits to preserve
representative distributions of each class. Second, targeted data
augmentation techniques—such as rotation, flipping, and color
jittering—were applied to increase the diversity and quantity
of samples for minority classes.
Feature Extraction and Model Architecture. We utilized the
DinoBloom foundation model as a feature extractor, leveraging
its pre-trained weights, which were kept frozen during training
to preserve the learned generalizable features. To adapt these
features for malaria parasite classification, we added two fully
connected layers with 512 and 128 units, respectively, each
followed by ReLU activation functions. The classification
layers were organized according to our three-stage hierarchical
structure, fine-tuning these layers to optimize the hierarchical
classification pipeline.
Optimization and Loss Functions. The model was trained
using the Adam optimizer with a learning rate of 0.001 and a
batch size of 32. Given the hierarchical nature of the task, we
employed different loss functions at each classification stage:

• Stage 1 (Infection Classification): Binary cross-entropy
loss for classifying cells as uninfected or infected.

• Stage 2 (Species Classification): Binary cross-entropy
loss to distinguish between Plasmodium falciparum and
Plasmodium vivax.

• Stage 3 (Developmental Stage Classification): Categori-
cal cross-entropy loss for classifying the specific develop-
mental stage (ring, gametocyte, schizont, or trophozoite)
of each species.

Training Strategy. The training process was monitored using
validation accuracy. Early stopping was applied to prevent
overfitting and improve generalization. All experiments were
implemented using the PyTorch framework and conducted
on an NVIDIA A100 GPU, ensuring efficient training and
evaluation.

D. Ablation Study

To assess the impact of various components in our hier-
archical classification framework, we conducted an ablation
study by systematically modifying key elements of our model
as follows:

• Zero-Shot Classification with DinoBloom’s Learned
Representations: To evaluate the effectiveness of fine-
tuning DinoBloom’s extracted features, we tested a zero-
shot classification approach using its pre-trained feature
representations without additional fine-tuning:

– Embeddings were extracted from DinoBloom, fol-
lowed by a prototype-based zero-shot classification
approach.

– Class prototypes were generated for each classifica-
tion head (Infection Head, Parasite Species Head,
and Parasite Stage Head) by computing the mean
embedding of labeled reference samples per class.

– Classification was performed using cosine similarity,
assigning input embeddings to the class with the
highest similarity to its corresponding prototype.

– Infection classification involved comparing cell em-
beddings to uninfected and infected prototypes.

– For infected cells, cosine similarity determined the
parasite species (Plasmodium falciparum or Plas-
modium vivax).

– Finally, embeddings of correctly classified P. fal-
ciparum and P. vivax cells were matched to their
respective stage prototypes (four stages per species).

This hierarchical zero-shot method enabled classification
without explicit fine-tuning of the model.

• Training Baseline Models from Scratch: We trained
ResNet50 [17] and ViT-base [10] from scratch to evaluate
their capacity to learn from limited malaria datasets
without the benefit of prior knowledge from large-scale
image corpora.

• Flat vs. Hierarchical Classification: To assess the im-
portance of the hierarchical classification strategy, we
replaced it with a flat classification approach where all
classes (uninfected, parasite type, P. falciparum stages,
and P. vivax stages) were predicted in a single step. This
experiment provided insights into the effectiveness of the



TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED MODEL ACROSS

HIERARCHICAL AND FLAT CLASSIFICATION APPROACHES. THE TABLE
REPORTS ACCURACY, AUC-ROC, RECALL, PRECISION, AND F1-SCORE,

WITH AUC-ROC, RECALL, PRECISION, AND F1-SCORE FOR MULTI-CLASS
HEADS CALCULATED AS WEIGHTED AVERAGES BASED ON SUPPORT (THE

NUMBER OF TRUE INSTANCES FOR EACH LABEL).

Head (Hierarchical or Flat) Accuracy (%) ↑ AUC-ROC (%) ↑ Recall (%) ↑ Precision (%) ↑ F1-score (%) ↑

Infection Head

DinoBloom (Zero-Shot) 93.85 98.25 95.18 89.81 92.42
Hierarchical
DinoBloom (Fine-tuning) 98.66 99.67 98.81 98.34 98.38
ResNet50 [17] 81.00 79.99 75.21 77.39 75.79
ResNet50-WeightedLoss 97.44 99.16 96.64 96.83 96.73
ViT-base [10] 73.14 70.58 58.57 68.76 62.11
ViT-base-WeightedLoss 96.55 99.54 95.10 98.25 95.50
ViT-base-SeparateTokens 98.12 99.65 97.00 97.23 97.20
Flat
DinoBloom (Fine-tuning) 98.54 99.63 97.53 98.24 98.13
ResNet50 [17] 90.12 94.67 89.14 86.90 87.77
ViT-base [10] 98.02 99.43 96.95 97.10 97.00

Parasite Type Head

DinoBloom (Zero-Shot) 98.41 97.99 97.97 98.95 98.53
Hierarchical
DinoBloom (Fine-tuning) 98.75 98.09 98.05 99.95 98.99
ResNet50 [17] 72.29 77.61 56.09 99.09 71.32
ResNet50-WeightedLoss 96.59 94.62 94.52 99.20 97.15
ViT-base [10] 57.32 64.48 35.52 90.77 46.94
ViT-base-WeightedLoss 97.16 96.50 95.44 99.00 97.67
ViT-base-SeparateTokens 98.20 98.03 97.75 98.89 98.40
Flat
DinoBloom (Fine-tuning) 97.53 98.02 96.09 99.86 97.98
ResNet50 [17] 90.40 98.03 85.31 99.24 91.63
ViT-base [10] 97.29 98.00 95.67 98.80 97.78

Vivax Stages

DinoBloom (Zero-Shot) 70.31 98.94 70.31 79.00 72.68
Hierarchical
DinoBloom (Fine-tuning) 85.90 90.79 85.90 85.68 85.71
ResNet50 [17] 56.00 68.14 56.00 67.22 56.66
ResNet50-WeightedLoss 81.14 87.77 81.14 80.60 80.65
ViT-base [10] 38.13 54.00 38.13 53.01 38.22
ViT-base-WeightedLoss 78.22 87.17 78.22 78.30 78.25
ViT-base-SeparateTokens 82.88 90.18 82.88 83.08 82.90
Flat
DinoBloom (Fine-tuning) 80.92 89.83 80.92 83.69 82.15
ResNet50 [17] 61.04 76.14 61.04 71.48 62.96
ViT-base [10] 79.39 89.41 79.39 82.47 80.45

Falciparum Stages

DinoBloom (Zero-Shot) 89.51 92.73 89.51 96.42 92.27
Hierarchical
DinoBloom (Fine-tuning) 96.92 91.77 96.92 96.59 96.62
ResNet50 [17] 93.09 73.85 93.09 91.09 91.85
ResNet50-WeightedLoss 95.61 82.57 95.61 93.94 94.22
ViT-base [10] 94.83 54.49 94.83 89.94 92.32
ViT-base-WeightedLoss 95.61 79.91 95.61 95.26 95.50
ViT-base-SeparateTokens 96.50 85.93 96.92 95.95 96.35
Flat
DinoBloom (Fine-tuning) 95.91 88.23 95.91 95.58 95.66
ResNet50 [17] 76.10 63.92 76.10 90.33 82.38
ViT-base [10] 96.43 85.58 96.43 96.10 96.30

hierarchical strategy and underscored the advantages of
leveraging feature extractors from pretrained foundation
models for accurate malaria parasite classification.

IV. RESULTS AND DISCUSSION

Table I presents the performance comparison of the pro-
posed model using the frozen pretrained feature extractors
from DinoBloom model and ResNet50 and ViT-base models
across hierarchical and flat classification approaches. The
zero-shot classification results using DinoBloom model are
also reported. The table reports Accuracy, AUC-ROC, Recall,
Precision, and F1-score, where the latter four metrics for multi-
class classification heads are computed as weighted averages
based on class support (i.e., the number of true instances per
class). The hierarchical DinoBloom-based model achieves the
highest performance across all classification heads.

Fig. 3 displays the ROC curves for each classification head
of the hierarchical DinoBloom-based model, illustrating the
model’s ability to distinguish between classes at different

hierarchical levels. These curves provide a comprehensive
visualization of the trade-off between sensitivity (true positive
rate) and the false positive rate, offering valuable insights into
the classification effectiveness of each head.

Our experiments reveal a significant contrast in classifi-
cation performance when employing hierarchical versus flat
classification across different feature extraction backbones.
When using DinoBloom as a feature extractor, hierarchical
classification consistently outperforms flat classification. This
can be attributed to DinoBloom’s self-supervised training,
which inherently structures its feature space in a hierarchical
manner by clustering semantically similar representations. As
a result, hierarchical classification effectively aligns with this
structured embedding space, allowing for stepwise decision-
making (infection → parasite type → stage) with reduced
class overlap. In contrast, flat classification with DinoBloom
struggles due to the similarity of certain feature embeddings,
where early-stage infections from different parasites may be
closely clustered, leading to misclassifications when using a
single-step classifier.

Conversely, when using ResNet or ViT, flat classifica-
tion initially outperformed hierarchical classification, likely
due to error propagation—misclassifications in the infection
classification step led to incorrect downstream decisions in
parasite and stage classification. To address this issue, we
introduced weighted loss training, giving higher importance to
the infection classification head to ensure more reliable initial
predictions. By dynamically adjusting loss weights based on
task difficulty, we successfully improved hierarchical classi-
fication performance for ResNet, reducing error propagation
and making it more effective than flat classification in this
case.

However, weighted loss training did not improve ViT’s
hierarchical classification. This discrepancy can be explained
by fundamental differences in how ResNet and ViT extract fea-
tures. ResNet, as a convolutional neural network, builds rep-
resentations in a hierarchical manner—starting from low-level
features (edges, textures) and progressively forming higher-
level semantic concepts. This aligns well with hierarchical
classification, as each classification step refines local details
relevant to the specific decision level. By emphasizing the in-
fection classification head, ResNet learns more discriminative
features at earlier stages, improving overall performance.

In contrast, ViT lacks an inherent hierarchical feature ex-
traction process. Instead of progressively building local-to-
global representations, ViT processes the entire image globally
from the start using self-attention mechanisms. As a result,
ViT does not naturally benefit from the hierarchical classifi-
cation structure. While weighted loss adjustments improved
its performance, it still remained lower than that of the ViT
flat classification. Errors in earlier decisions (e.g., infection
classification) still propagate downstream, as ViT’s global
feature learning does not explicitly refine representations step
by step. This explains why hierarchical classification, even
with weighted loss, does not outperform flat classification in
ViT.



Fig. 3. ROC curves for the hierarchical classification heads: (a) infection classification (uninfected vs. infected), (b) parasite type classification (Plasmodium
vivax vs. Plasmodium falciparum), (c) P. vivax stage classification, and (d) P. falciparum stage classification. Each curve represents the model’s ability to
distinguish between classes, highlighting its performance across different hierarchical levels.

To address this, we propose an alternative hierarchical
token-based ViT approach, where instead of a single classifi-
cation token, we introduce separate class tokens for infection,
parasite type, and stage classification. This method allows ViT
to independently learn distinct feature representations for each
hierarchical level, mitigating error propagation issues. Our
results demonstrate that this approach outperforms both the
hierarchical ViT with a single class token and the flat ViT,
highlighting the effectiveness of using separate class tokens
for hierarchical classification.

Regarding the datasets, the two datasets may differ in
imaging hardware and protocols, potentially introducing do-
main shifts. While we did not explicitly address this, using a
foundation model helped mitigate such variability. We plan to
explore domain adaptation strategies in future work.

V. CONCLUSION

In this study, we proposed a hierarchical deep learning
framework for the classification of malaria parasites from
single blood cell images. The framework utilizes the Di-
noBloom foundation model as a frozen feature extractor,
leveraging its pre-trained representations to capture robust and
generalizable features. These features are further refined using
fully connected layers before being fed into a hierarchical
classification pipeline. The model demonstrates high perfor-
mance in distinguishing between uninfected and infected cells,
identifying the species of the parasite (Plasmodium falciparum
or Plasmodium vivax), and classifying the developmental stage
(ring, trophozoite, schizont, or gametocyte). By reflecting the
biological progression of malaria infection, the hierarchical
classification approach not only improves accuracy but also
enhances the interpretability of the model’s predictions by
leveraging the dependencies between classification stages.
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