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ABSTRACT

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system,
which is characterized by the presence of lesions in the brain and the spinal cord.
Magnetic resonance imaging (MRI) has become a core para-clinical tool for diagnos-
ing and predicting long-term disability and treatment response in MS patients. It
has been accepted that dissemination in time can be demonstrated by a new T2
or gadolinium-enhancing lesion(s) in follow-up MRI, with reference to a baseline
scan. The manual longitudinal detection of change is not only time-consuming, but
is also prone to intra- and inter-observer variability. Therefore, a reliable and ro-
bust automatic detection and quantification of these lesions could be used to help
neuroradiologists to improve the diagnosis and follow-up evaluation of MS patients.

The main goal of this PhD thesis is to develop novel and fully automated methods
for the detection of new MS lesions in longitudinal brain MRI. In order to fulfill this
goal, firstly, we analyzed and evaluated the state-of-the-art on MS lesion detection
approaches. Our analysis showed that the tissue transformation, which is the effect
of a lesion that does not always appear as an intensity change on the tissue where it
is located, can also influence the appearance of surrounding tissues (tissue deform-
ation). Moreover, we observed the importance of using prior knowledge to guide
the lesion detection and segmentation. Supervised approaches that rely on similar
segmented cases usually outperform unsupervised strategies. In the second stage, a
novel fully automated logistic regression (LR) based framework has been proposed
and evaluated for the detection and segmentation of new T2-w lesions. The frame-
work was based on intensity subtraction and deformation field (DF). The DF were
obtained using the multi-resolution Demons registration approach from ITK v.4. In
the third stage, we focused on the use deep learning (DL) techniques, which simplify
the feature extraction process, and could gather unknown patterns to help in the
desired task. We proposed a fully convolutional neural network (FCNN) approach
to detect new T2-w lesions in longitudinal brain MR images. The model was trained
end-to-end and simultaneously learned both the DFs and the new T2-w lesions. We
qualitatively and quantitatively evaluated the proposed methods (DL-based and
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LR-based) using an in-house clinical dataset from our collaborating hospitals and
compared it with other state-of-the-art methods. Finally, we proposed and evaluated
a deep learning based approach for MS lesion synthesis. The proposed pipeline can
generate synthetic images with MS lesions. We used the generated synthetic MS le-
sion images as data augmentation to improve the lesion detection and segmentation
performance in both cross-sectional and longitudinal analysis.



RESUMEN

La Esclerosis Múltiple (EM) es una enfermedad inflamatoria del sistema nervioso
central, que se caracteriza por la presencia de lesiones en el cerebro y la médula es-
pinal. La resonancia magnética (RM) se ha convertido en una herramienta paraclín-
ica central para diagnosticar y predecir la discapacidad a largo plazo y la respuesta
al tratamiento en pacientes con EM. Se ha aceptado que la diseminación en el
tiempo puede ser demostrada con la aparición de una nueva lesión, o lesiones que
mejoran con gadolinio en la RM de seguimiento, con referencia a una exploración
basal del paciente. La detección manual del cambio en estudios longitudinales no
sólo conlleva mucho tiempo, sino que también es propensa a la variabilidad intra
e interobservador. Por lo tanto, una detección y cuantificación automática fiable
y robusta de estas lesiones podría utilizarse para ayudar a los neurorradiólogos a
mejorar el diagnóstico y la evaluación del seguimiento de los pacientes con EM.

El objetivo principal de esta tesis doctoral es desarrollar métodos novedosos y
totalmente automatizados para la detección de nuevas lesiones de EM en estudios
longitudinales de resonancia magnética cerebral. Para cumplir este objetivo, en
primer lugar, analizamos y evaluamos el estado del arte de los métodos de detección
de lesiones de EM. Nuestro análisis mostró que la transformación del tejido, que es
el efecto de una lesión que no siempre aparece como un cambio de intensidad en
el tejido donde se encuentra, también puede influir en la apariencia de los tejidos
circundantes (deformación tisular). Además, observamos la importancia de utilizar
conocimientos previos para guiar la detección y segmentación de las lesiones. Los
enfoques supervisados que se basan en casos segmentados similares suelen superar
a las estrategias no supervisadas. En la segunda etapa, se propuso y evaluó un
nuevo método basado en la regresión logística totalmente automatizada (LR) para
la detección y segmentación de nuevas lesiones T2-w. La propuesta se basaba en la
intensidad de la sustracción de las imágenes y el campo de deformación (DF). Los
DF se obtuvieron utilizando la técnica de registro de Demons de ITK v.4. En la
tercera etapa, nos centramos en el uso de técnicas de aprendizaje profundo (DL),
que simplifican el proceso de extracción de características, y que permiten encontrar
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patrones desconocidos para ayudar en la tarea deseada. Propusimos un enfoque
de red neural completamente convolucional (FCNN) para detectar nuevas lesiones
T2-w en las imágenes longitudinales de RM cerebral. El modelo fue entrenado de
principio a fin y simultáneamente aprendió tanto los DFs como las nuevas lesiones
T2-w. Evaluamos cualitativa y cuantitativamente los métodos propuestos (basados
en DL y LR) utilizando un conjunto de datos clínicos internos de nuestros hos-
pitales colaboradores y los comparamos con otros métodos de última generación.
Finalmente, propusimos y evaluamos un enfoque basado en el aprendizaje profundo
para la síntesis de lesiones de EM. La propuesta realizada permite generar imágenes
sintéticas con lesiones de EM. Se utilizaron las imágenes sintéticas generadas de le-
siones de EM para aumentar los datos de entrenamiento y mejorar así la detección y
la segmentación de las lesiones, tanto en análisis transversales como longitudinales.



RESUM

L’Esclerosi Múltiple (EM) és una malaltia inflamatòria del sistema nerviós central,
que es caracteritza per la presència de lesions al cervell i a la medul·la espinal. La
ressonància magnètica (RM) s’ha convertit en una eina paraclínica bàsica per al
diagnòstic i predicció de la discapacitat a llarg termini i la resposta al tractament en
pacients amb EM. S’ha acceptat que la difusió en el temps es pot demostrar amb una
nova lesió o lesions de gadolini observades en la RM de seguiment, en referència a
una exploració basal. La detecció manual del canvi longitudinal no només requereix
de temps, sinó que també és propensa a la variabilitat intra i interobservador. Per
tant, es podria utilitzar una detecció i quantificació automàtica fiable i robusta
d’aquestes lesions per ajudar els neuroradiòlegs a millorar el diagnòstic i l’avaluació
del seguiment dels pacients amb EM.

L’objectiu principal d’aquesta tesi de doctorat és desenvolupar mètodes nous i
totalment automatitzats per a la detecció de noves lesions d’EM en imatges lon-
gitudinals de RM del cervell. Per assolir aquest objectiu, primer hem analitzat i
avaluat l’estat de l’art dels mètodes de detecció de lesions d’EM. L’anàlisi real-
itzat va demostrar que la transformació del teixit, que és l’efecte d’una lesió que
no apareix sempre com a canvi d’intensitat al teixit on es troba, també pot influir
en l’aparició de teixits circumdants (deformació del teixit). A més, es va observar
la importància d’utilitzar coneixements a priori per guiar la detecció i segmentació
de lesions. Els enfocaments supervisats que es basen en casos segmentats similars
solen superar les estratègies no supervisades. En la segona etapa, s’ha proposat i
avaluat una nova proposta basada en una regressió logística (LR) per a la detecció
i segmentació de noves lesions T2-w. El proposta es basava en les intensitats de la
resta d’imatges i amb el camp de deformació (DF). Els DF es van obtenir mitjançant
la tècnica de registre Demons de resolució múltiple d’ITK v.4. En la tercera etapa,
ens vam centrar en l’ús de tècniques d’aprenentatge profund (DL), que simplifiquen
el procés d’extracció de característiques i poden descobrir patrons desconeguts per
ajudar en la tasca desitjada. Es va proposar un mètode basat en una xarxa neuronal
completament convolucional (FCNN) per detectar noves T2-w lesions en imatges de
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RM longitudinals del cervell. El model es va entrenar end-to-end i alhora es van
aprendre tant els camps de deformació (DF) com les noves lesions T2-w. Es van
avaluar qualitativament i quantitativament els mètodes proposats (basats en DL i
basats en LR) mitjançant un conjunt de dades clíniques internes dels nostres hospit-
als col·laboradors i ho vam comparar amb altres mètodes actuals de l’estat de l’art.
Finalment, es va proposar i avaluar una tècnica basada en l’aprenentatge profund
per a la síntesi de lesions d’EM. El pipeline proposat pot generar imatges sintètiques
amb lesions d’EM. Hem utilitzat les imatges generades de lesions sintètiques d’EM
com a augmentació de les dades d’entrenament per així millorar el rendiment de
detecció i segmentació de lesions tant en estudis transversals com longitudinals.



CHAPTER 1

INTRODUCTION

1.1 Multiple sclerosis

1.1.1 What is multiple sclerosis?

The central nervous system (CNS) and the peripheral nervous system are the two
parts of the human nervous system. The CNS consists of the brain and the spinal
chord, and the peripheral nervous system connects the CNS with the sense organs [1].
CNS is mainly composed of two tissues: gray matter (GM), which consists of neur-
onal cell bodies, and white matter (WM) tissue, which is mainly composed of my-
elinated axon tracts [2]. The brain itself is composed mostly of GM and WM, both
surrounded by the cerebrospinal fluid (CSF), which provides basic mechanical and
immunological protection to the brain inside the skull [2].

Multiple sclerosis (MS) is the most common chronic immune-mediated disabling
neurological disease of the central nervous system. Nowadays, MS is the most fre-
quent nontraumatic neurological disease causing the most disability in young adults.
It follows a similar behavior to other putative autoimmune diseases [3]. It has a
low incidence in childhood, but the probability increases rapidly in young adult-
hood reaching a peak between 25 and 35 years, and then slowly declines, becom-
ing rare at 50 and older [4]. Recent epidemiological studies show that 2.3 mil-
lion people have been diagnosed with MS worldwide, of which almost three times
more women than men are affected. The causes are still unknown, but interaction
with multiple genetic and as-yet-unidentified environmental factor(s) are potential
candidates [5]. Moreover, geographic studies show the prevalence of MS around
the world (see Figure 1.1), affirming that migration from high to lower-prevalence
in areas before the age of 15, reduces the likelihood of developing MS. Looking at
the map in Figure 1.1, we can see that Europe, the United States, Canada, New
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Figure 1.1: MS prevalence around the world. Image extracted from http://www.
oysterhc.co.uk/blogs/ms-horrible/ (accessed 01.09.2019).

Zealand, and sections of Australia have more MS sufferers than Asia and the tropics.

Pathologically, MS is an inflammatory-demyelinating and neurodegenerative dis-
ease, clinically defined by demyelinating lesions and characterized by areas of inflam-
mation, demyelination (i.e. damage of the myelin), axonal loss, and gliosis scattered
throughout the CNS [6, 7]. Therefore, demyelination in the brain and spinal cord
leads to a disruption of the communication within the brain and between the brain
and the body. Partially demyelinated axons can cause delay and demyelinated ax-
ons can discharge spontaneously. Affecting different sites within the brain or spinal
cord, depending on the site, MS can cause cognitive impairment, painful loss of vis-
ion, tremors, clumsiness and poor balance, vertigo, impaired speech and swallowing,
weakness, stiffness and painful spasms, bladder dysfunction as well as many other
impairments [6].

1.1.2 MS phenotypes and clinical course

MS takes several forms, with new symptoms either occurring in isolated attacks (re-
lapsing forms) or building up over time (progressive forms). The initial presentation
of the disease varies according to both the location of the lesions and the type of
symptom onset (relapsing or progressive). The majority of patients who develop MS
begin with a single episode, called clinically isolated syndrome (CIS), that involves
the optic nerve, brainstem, or spinal cord, and resolves over time.
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Figure 1.2: Main symptoms of MS. Image extracted from http://neurosciencenews.
com/neurology-ms-gray-matter-393/ (accessed 01.09.2019).

Patients that have at least two relapses are described as having Relapsing Remit-
ting MS (RRMS). RRMS is characterized by exacerbation times where symptoms
are present. These periods are followed by periods of remission, where the patient
recovers partially or totally from the disease’s symptoms. Sufferers are relatively
symptom-free for periods of time that are interrupted by attacks that can put them
in hospital for weeks, or even months, at a time. These attacks worsen the symptoms
(see Figure 1.2) and are followed by full, partial, or no recovery of some function
or another. The interval between relapses varies, there can be many years between
the first manifestation and the first relapse. On average, 65% of people with RRMS
develop secondary-progressive MS (SPMS), this progressive part may begin shortly
after the onset or may occur even decades later.

The last two types of this condition are less common and usually affect people
who develop MS after age 40. The progressive remitting (PRMS) form is typified
by an increase in the relapse times with significant recovery but with worsening
symptoms in new relapse intervals. The Primary Progressive (PPMS) form is char-
acterized by a severe decrease of remission times with special localization in the
brain. Moreover, patients with incidental MRI findings consistent with MS are clas-
sified as suffering from radiologically isolated syndrome (RIS). A third of patients
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Figure 1.3: MRI scanners. The most common MRI scanners are (a) Philips , (b)
Siemens and (c) General Electric.

with RIS will develop clinical symptoms of MS within 5 years of follow-up, either a
relapse or progressive symptoms [8].

As a result, diagnosing and monitoring the progression of this disease is vital
for MS patients. In this sense, in order to improve the quality of the diagnostic
assessment and to provide a rapid and sensitive measure of treatment, magnetic
resonance imaging (MRI) techniques have been widely used and have become a key
tool for clinical purposes.

1.2 Magnetic resonance imaging

MRI is a noninvasive medical imaging technique used in radiology to generate image
representations of different internal anatomical organs and physiological processes
of the body. MRI scanners use strong magnetic fields and radio waves to acquire
the 3D images without the use of damaging radiation. Over the last 40 years, MRI
has evolved as a clinical modality [9], and, in particular, as an essential tool for the
diagnosis and evaluation of CNS disorders such as MS [10], due to the high specificity
and sensitivity visualization of structural MRI for the dissemination of WM lesions
in time and space, which is a key factor in recent diagnostic criteria [11, 12]. There
are different brands for MRI scanners, being the most common Philips, Siemens and
General Electric. Figure 1.3 depict three MRI scanners from the 3 different brands.
Types of MRI scanners can also be differentiated by their magnetic field strength
(teslas (T)). Scanners use a magnet strength that can range from 0.5T up to 7.0T.
A 1.5T MRI provides good image quality, fast scan times, and the evaluation of how
specific structures in the body function. It is the most standard nowadays for the
MS diagnosis. The 3.0T MRI scanner is ideal for visualizing very fine detail such as
brain and heart vessels. With its higher signal-to-noise (SNR) and contrast-to-noise
ratio (CNR) compared to lower field strengths, 7.0T MRI has current applications
in the field of brain MRI, in clinical studies as well as clinical practice [13].

Brain MRI consists of a 3D model of the brain, which can be acquired in three
different orientations: axial, coronal, and sagital (see Figure 1.4). The resolution
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is given by a 3 × 3 matrix, each axis being one of its orientation. Axis z denotes
the number of slices, which are 2D images of x × y. Even though the final image
resolution is given in voxels, the voxel spacing is described in mm. The voxel is
isotropic if it has equal distance in all three directions. For example, isotropic
images can be obtained at 0.5 × 0.5 × 0.5 mm3 or 1.0 × 1.0 × 1.0 mm3, meaning that
each voxel in the image represents 0.125 mm3 and 1.0 mm3 of the real brain and
there is 0.5 mm and 1.0 mm between each slice, respectively. Instead, anisotropic
images can be acquired at 1.0 × 1.0 × 3.0 mm3, thus the gap between slices will
be 3.0 mm, so the resolution would be lower, 3.0 mm3 per voxel. A whole brain
is illustrated in Figure 1.4, which has been acquired at 1.5T scanner in the axial
orientation with a resolution of 1.0 × 1.0 × 3.0 mm3, i.e. 240 × 320 by 46 slices. In
the chapter 2, we will explain in more details the MRI technology.

With MRI it is possible to detect contrast differences in soft tissues [14]. Ad-
ditionally, it has been demonstrated that MRI is highly sensitive for detecting MS
plaques. MRI techniques play a pivotal role in both diagnosing and monitoring the
progression of MS and is used as a surrogate marker of drug efficacy in treatment tri-
als [15]. For instance, as a CIS is an individual’s first neurological episode caused by
inflammation or demyelination of nerve tissue, MRI helps to confirm the diagnosis
of MS after the second validated clinical event (clinically definite MS (CDMS)) and
differential diagnosis with other neurological diseases [15, 16]. Moreover, a num-
ber of trials have reported that MRI is useful in monitoring early treatment of
MS and offers an opportunity to reduce the disease’s activity, slowing disability
progression [17]. Consequently, MRI-derived metrics have become the most import-
ant paraclinical tool in diagnosing MS and in understanding the natural history of
the disease as well as monitoring the efficacy of experimental treatments [15, 17, 18].

1.3 Longitudinal brain MRI analysis for MS

In practice, it is necessary to integrate the clinical, imaging, and laboratory findings
for providing a definite diagnosis of MS. The diagnosis of MS requires objective
evidence of CNS lesions disseminated in space (cross-sectional analysis, i.e. MS
lesion segmentation in a single time-point) and time (longitudinal analysis, i.e. MS
lesion segmentation between successive time points). In 2001, a panel of experts on
MS came up with a set of diagnostic criteria that included MR images for the first
time to provide evidence of CNS lesions [19]. The so called McDonald criteria have
undergone several revisions in recent years [15, 20, 21], with increased certainty with
successive versions, and have become the gold standard test for MS diagnosis.

The last revision (2017) defines lesion dissemination as follows:

• Dissemination in space (DIS): demonstrated by one or more lesions that
are characteristic of MS in two or more of four areas of the CNS (periventricu-
lar, cortical or juxtacortical, and infratentorial brain regions, and the spinal
cord).
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Figure 1.4: Brain MRI representation. The first row illustrates the 3D volume
and its 3 different orientations (axial, coronal, and sagital respectively from left to
right). The figure illustrates the volume’s 46 slices in the axial orientation.
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• Dissemination in time (DIT): demonstrated by the simultaneous presence
of gadolinium-enhancing and nonenhancing lesions at any time or by a new
lesion on follow-up MRI, with reference to a baseline scan, irrespective of the
timing of the baseline MRI.

Consequently, it has been accepted that DIT can be demonstrated by either the
simultaneous presence of asymptomatic gadolinium-enhancing and nonenhancing
lesions (types of MS lesions will be explained in more detail in 2.1) in any MRI scan
or in those patients who do not meet this criteria, a new T2 or gadolinium-enhancing
lesion(s) in follow-up MRI, with reference to a baseline scan (longitudinal MRI
analysis). Figure 1.5 depicts McDonald’s diagnostic criteria example. The manual
longitudinal detection of change is not only time-consuming, but is also prone to
intra- and inter-observer variability. Therefore, with the need of using MRI-derived
metrics, a reliable and robust automatic detection and quantification of these lesions
could be used to diagnose the disease according to McDonald’s criteria and to help
neuroradiologists to improve the diagnosis and follow-up evaluation of MS patients.

1.4 Research background

The Computer Vision and Robotics group (VICOROB) of the University of Girona
has been working on medical image analysis since 1996, mainly in the segmentation
and registration of mammographic images. In 2009, the group started collaborating
with several medical teams experts in MS, with the objective of developing new
tools that could be transferred for clinical use. Thanks to the group prior knowledge
acquired through previous medical projects, a new line of research emerged, focused
on brain MRI analysis and the extraction of brain MRI biomarkers. This new line
started with the segmentation of MS lesions and has expanded to other fields such
as temporal analysis, registration (temporal and inter-subject), tissue segmentation,
atrophy analysis and brain structure segmentation.

All these studies have been accomplished inside the framework of several research
projects:

1. [ 2015 - 2017 ] NICOLE: “Herramientas de neuroimagen para mejorar el dia-
gnosis y el seguimiento clínico de los pacientes con Esclerosis Múltiple”. Awar-
ded in 2014 by the spanish call Retos de investigación 2014. Ref: TIN2014-
55710-R.

2. [ 2015 - 2019 ] BiomarkEM.cat: “New technologies applied to clinical practice
for obtaining biomarkers of atrophy and lesions in magnetic resonance images
of patients with multiple sclerosis”. Awarded in 2015 by the Fundació la Marató
de TV3.

3. [ 2018 - 2020 ] EVOLUTION: “Predictive models for multiple sclerosis using
brain magnetic resonance imaging biomarkers”. Awarded in 2017 by Ministerio
de ciencia y tecnologia. RETOS 2017. Ref: DPI2017-86696-R.
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Figure 1.5: McDonald’s diagnostic criteria example. Demonstration of dissemina-
tion in space (red circles in baseline and follow-up scans) and dissemination in time
(yellow circles in the baseline scan and green circles in the follow-up scan).
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Since then, the research group has published original contributions in different
fields such as image preprocessing [22, 23], MS lesion segmentation [24, 25, 26, 27,
28, 29, 30], temporal analysis [31, 32, 33, 34], image registration [35, 36], and tissue
segmentation [37, 38, 39, 40]. All the projects have been carried out in collaboration
with different medical MS teams from:

• The Hospital Vall d’Hebron: Dr. Rovira, who is the director of the “Unitat de
Ressonància Magnètica-Centre Vall d’Hebron” (URMVH) and has particip-
ated in numerous research projects funded by public and private institutions
in the last years, as well as Dr. Pareto and technicians Huerga and Corral.
This group is part of the MAGNetic resonance Imaging in MS (MAGNIMS)
network, a European network of centers that share an interest in the MS study
through MRI.

• The Hospital Josep Trueta: Dr. Ramió-Torrentà, who is the current coordin-
ator of the “Unitat de Neuroimmunologia i Esclerosi Múltiple”, as well as
Dr. Robles and Dr. Beltrán, who work in the neurology and radiology units,
respectively.

• The Clínica Girona / Hospital Santa Caterina: Dr. Vilanova and Dr. Barceló
are the codirectors of the “Unitat de Ressonància Magnètica” at the Clín-
ica Girona and are members of several national and international radiology
societies.

1.5 Objectives

As part of the NICOLE, BiomarkEM.cat, and EVOLUTION research project frame-
works, the main goal of this thesis is:

to develop novel and fully automated methods for the detection of
new T2-w lesions in longitudinal MR images of multiple sclerosis
patients.

Different sub-objectives have to be covered first in order to fulfill the main goal.
All these stages can be considered as sub-objectives that allow us to gain a better
knowledge of the problem that we want to overcome. In what follows, we detail
these proposed sub-goals:

• to propose and evaluate a fully automated supervised framework
with intensity subtraction and deformation field for the detection
of new T2-w lesions in multiple sclerosis. This stage aims to propose
a fully automated method for detecting new T2-w MS lesions. We aim to
study how to incorporate the deformation field (DF) information extracted
from a registration together with features extracted from intensity subtraction.
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We plan to merge intensity- and deformation-based features in an automated
multichannel supervised logistic regression (LR) classification. In contrast with
the previous supervised approaches, we aim to use features not only from the
baseline, follow-up, and subtraction images but also from the DF operators
obtained from the nonrigid registration between longitudinal scans. In this
stage, we aim to validate the accuracy of the proposed method using an in-
house clinical dataset from our collaborating hospitals and comparing it with
the state of the art in longitudinal MS detection.

• to propose and evaluate a deep learning (DL) based approach for the
detection of new T2-w lesions in multiple sclerosis. This stage aims to
propose fully automated deep learning based method for detecting new T2-w
MS lesions. With this approach, we aim to avoid the definition of hand-crafting
feature vectors to extract appearance information. A convolutional neural
networks (CNNs) will learn a set of features that are specifically optimized
for the lesion segmentation task directly from the image data. In this stage,
we will qualitatively and quantitatively evaluate the proposed method using
an in-house clinical dataset from our collaborating hospitals and comparing it
with the state-of-the-art methods including our previous proposal using DF
operators and the LR model.

• to propose and evaluate a deep learning based approach model for
MS lesion synthesis in MRI to improve the performance of cross-
sectional and longitudinal MS lesion segmentation and detection
approaches. This goal aims to propose a deep learning based pipeline that
will able to generate synthetic images with MS lesions. Our objective is to
tackle one of the main limitations of deep learning methods which is the lack
of available ground-truth data needed for the supervised MS lesion detection
and segmentation strategies. Therefore, the generated synthetic MS lesion
images could be used as data augmentation to improve the cross-sectional
and longitudinal lesion detection and segmentation performance. For cross-
sectional analysis, this will be done by synthesizing the lesions in new brain
images, coming from either healthy subjects or from patients with lesions. For
longitudinal analysis, this will be done by MS lesions could be added only to the
follow-up scans keeping the baseline images untouched. We will qualitatively
and quantitatively evaluate the proposed pipeline using MS patient data from
an in-house clinical dataset, the public MICCAI 2016 challenge dataset, and
the public ISBI2015 challenge dataset.

1.6 Document structure

The rest of this thesis is structured as follows:

• Chapter 2. Thesis background. After stating the problem in chapter 1, we
present a general background about the main topics of this thesis. The chapter
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is divided in 3 main sections covering details of MRI, brain image analysis
methods in MS, and some general machine learning concepts for medical image
analysis.

• Chapter 3. A logistic regression model for new T2-w lesion detec-
tion in multiple sclerosis. In this chapter, we present a new method for
detecting new T2-w MS lesions. The method is a supervised framework with
intensity subtraction and deformation field features. The method is evaluated
qualitatively and quantitatively and compared with the state-of-the-art meth-
ods. Moreover, we analyze the performance of the method according to the
different lesion sizes, and also the specificity of the method with patients with
no new T2-w lesions.

• Chapter 4. A deep learning model for new T2-w lesion detection in
multiple sclerosis. In this chapter, we propose a fully CNN approach to de-
tect new T2-w lesions in longitudinal brain MR images. The proposed model
combines intensity-based and deformation-based features within an end-to-
end deep learning approach. The DFs and the new T2-w lesions are learned
simultaneously using a combined loss function. The method is evaluated qual-
itatively and quantitatively and compared with the state-of-the-art methods.
Moreover, we demonstrate the contribution of simultaneously learning both the
DF and the segmentation of new T2-w lesions. We analyze the performance of
the method according to the different lesion sizes, and also the specificity of the
method with patients with no new T2-w lesions. We analyze also the perform-
ance of the proposed model and the state-of-the-art approaches on different
brain regions. The analysis of the new MS lesion detection was divided into
4 types (periventricular, juxtacortical, infratentorial, and deep white matter)
according to its location in the brain. Finally, we analyze the generalization
and the performance of the proposed approach when tested in images from a
different scanner and image acquisition protocol.

• Chapter 5. Multiple sclerosis lesion synthesis on magnetic reson-
ance imaging. In this chapter, we propose generating synthetic MS lesions
on MR images with the final aim to improve the performance of supervised
machine learning algorithms. The pipeline is evaluated cross-sectionally and
longitudinally on MS patient data from an in-house clinical dataset, the MIC-
CAI 2016 challenge dataset, and the public ISBI 2015 challenge dataset. For
cross-sectional analysis, the evaluation is based on measuring the similarit-
ies between the real and the synthetic images as well as in terms of lesion
detection performance by segmenting both the original and synthetic images
individually. Moreover, we demonstrate the usage of synthetic MS lesions gen-
erated on healthy images as data augmentation. We also analyze a scenario
of limited training data (one-image training) to demonstrate the effect of the
data augmentation. For longitudinal analysis, we present how to generate lon-
gitudinal synthetic datasets by generating cross-sectional MS lesion masks on
only to the follow-up scans of the longitudinal datasets with no new lesions
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keeping the baseline images untouched. Moreover, we use these longitudinal
synthetic datasets for training the supervised MS lesion change detection and
segmentation method demonstrating an increase in the performance of this
model when using them as data augmentation.

• Chapter 6. Conclusions and future work. Lastly, the main conclusions
based on the contributions of this thesis are presented. Moreover, we also point
out different future investigations to improve and extend the work carried out
for this PhD thesis.



CHAPTER 2

THESIS BACKGROUND

2.1 Magnetic resonance imaging in MS

2.1.1 MRI in details

In the chapter 1 we briefly described the importance of MRI. In what follows, we
will go deeper into the acquisition process, the components of an MRI system, how
MRI works, MRI parameters, and the obtained MRI sequences.

What is MRI?

The human body is composed of molecules that contain nuclei (or protons). MRI
scanners make use of the electromagnetic activity of atomic nuclei and use strong
magnetic fields and radio-waves in order to form images of the body. This is pos-
sible due to the fact that a large proportion of the human body is made up of fat
and water, both of which contain lots of hydrogen atoms. The hydrogen nuclei
are made up of protons and neutrons, both of which spin around their own axis,
this motion induces a magnetic field. When no external magnetic field is applied,
their axes are randomly aligned until they are exposed to an external magnetic
field. The interaction between the two magnetic fields urges the nuclei to align with
the magnetic field, and this movement creates magnetic moments. Tissues can be
distinguished from each other by examining the sum of all the magnetic moments
called, the net magnetization vector. For this purpose, a radio frequency (RF) that
matches the center frequency of the system is applied to the net magnetization
vector (resonance matching) [14].

By sending an RF pulse to the center frequency, with a certain strength (amp-
litude) and for a certain period of time, it is possible to flip the net magnetization
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by any degree (flip angle) in the range from 1◦ to 180◦ (lifting the protons into a
higher energy state), which is called the RF excitation process. However, as the
protons would rather be in a low energy state, when the RF energy source is turned
off, the net magnetization vector realigns with the axis of the external magnetic
field. Realigning with the magnetic field simultaneously and independently, the
longitudinal magnetization increases or recovers (T1 recovery, T1 relaxation or the
so-called Spin-Lattice relaxation) and the transverse magnetization decreases or de-
cays (T2 and T2* decays, T2 relaxation or the so-called Spin-Spin relaxation). Note
that various tissues have different relaxation times that make them distinguishable.
During the relaxation processes, the spins shed their excess energy in the shape of
radio frequency waves. In order to produce an image, these waves are caught by a
receiving coil positioned at right angles to the main magnetic field [14].

As shown in Figure 2.1, an MRI system consists of the following components:

• Magnet: the magnet is the most expensive part of the whole scanner. It is
used to generate the magnetic field and shim coils to make the magnetic field
as homogeneous as possible. This magnetic field aligns the hydrogen nuclei of
the brain.

• Gradient Coils: it is used to provide spatial localization of the signals apply-
ing additional magnetic fields. These additional magnetic fields can be used
to only generate detectable signals from specific locations in the body (spatial
excitation) and/or to make magnetization at different spatial locations at dif-
ferent frequencies, which enables k-space encoding of spatial information. The
gradient coils allow the different parts of the body to be scanned.

• Radio Frequency (RF) coil: it is used to transmit a radio signal into
the body part being imaged. This radio signal is applied after aligning the
hydrogen nuclei with the high magnetic field.

• Receiver Coil: it is used to detect the returning radio signals due to the
nuclei relaxation.

• Computer System: it is used to reconstruct the radio signals into the final
image.

MRI parameters and image contrast

The contrast in an MR image can be manipulated by changing the pulse sequence
parameters. A pulse sequence sets the specific number, strength, and timing of the
RF and gradient pulses. Repetition time (TR) and echo time (TE) are the two key
parameters that set the timing of the RF and gradient pulses, both measured in
milliseconds:

• TR: is the time between the application of the RF excitation pulse and the
start of the next RF pulse.
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Figure 2.1: MRI scanner scheme. Image extracted from http://www.colinmcnulty.
com/blog/wp-content/uploads/2011/08/mri-scanner-cutaway.jpg.

• TE: is the time between the application of the RF pulse and the peak of the
echo detected.

For instance, the difference between fat and water can be detected at short TRs since
the longitudinal magnetization (T1 recovery) recovers more quickly in fat than in
water. On the other hand, differences in the T2 signal decay in fat and water can
be detected at long TEs.

The spin echo (SE) and the gradient echo (GE) are two different MR pulse
sequences that can be found in the daily practice of MRI. SEs are produced by
pairs of RF pulses while GEs are generated by a single RF pulse in conjunction with
a gradient reversal [41]. GE sequences can record the echo much more quickly, a
fact that allows to reduce the TE. Moreover, when using low-flip-angle excitations
(less than 90◦) the TR can also be shorter. Hence, this kind of sequence is useful
when fast scans are needed, although it does not correct for local magnetic field
inhomogeneities. All other MRI sequences are variations of these two sequences
obtained by different parameterization [14].

Conventional MRI

Conventional MRI (cMRI) sequences refers to techniques that are available and
widely used in the diagnosis and treatment outcome measures in clinical trials [15].
The most common cMRI sequences are:

• T1 weighted (T1-w): related to TR (TR < 1000ms, TE < 30ms). Shorter
TRs allow us to distinguish between fat and water.

• T2 weighted (T2-w): related to TE (TR > 2000ms, TE > 80ms). Longer
TEs allow us to detect differences between fat and water.
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Figure 2.2: Different MR images of the brain: a) T1-w image, b) T2-w image,
c) PD-w image and d) FLAIR image and their e) tissue segmentation: CSF appears
cyan, GM appears dark blue, WM appears white and lesions appear red. Note that
soft tissues are more distinguishable in the T1-w image, while lesions are usually
better appreciated in the FLAIR one.

• Proton Density-weighted (PD-w): This is the result of a dual echo se-
quence on the T2w (TR > 2000ms, TE < 30ms).

• Fluid Attenuated Inversion Recovery (FLAIR): T2-w with the CSF
signal suppressed, presenting a high contrast between tissue and lesions. An
inversion recovery pulse is used to null the signal from the CSF.

In addition, other modalities such as Magnetization-Prepared Rapid Acquisition
with Gradient Echo (MP-RAGE), Double Inversion Recovery (DIR), and Phase-
Sensitive Inversion Recovery (PSIR) can also be helpful for disease diagnosis and
follow-up.

2.1.2 What are MR images of MS patients like?

As shown at Figure 2.2, the high contrast between the main brain tissues (GM,
formed by neuron nuclei, WM, formed by neuronal axons, and CSF which is the
colorless bodily fluid that provides protection and cerebral autoregulation of cerebral
blood flow) offered by cMRI modalities are clear. For instance, the CSF appears
dark in both T1-w and FLAIR images, while its the brightest tissue in T2-w and has
similar intensities to GM in PD-w images. On the other hand, WM is the brightest
tissue in T1-w, has an intermediate gray level in FLAIR, similar to GM, and has
the lowest signal in both PD-w and T2-w images. Finally, GM also appears with an
intermediate gray level in T2-w and T1-w images in comparison with to the other
two brain tissues. In MRI, MS plaques are well-delimited regions with hypointense
signal intensity with respect to GM on T1-w, while hyperintense with respect to
GM on T2-w, PD-w and FLAIR modalities.

Each sequence has its own advantages and drawbacks. For instance, while T1-w
images depict the anatomy better, T2-w images provide better depiction of the
disease due to fact that most tissues involved in a pathologic process have a higher
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water content than normal tissues. On the other hand, PD-w sequences are capable
of depicting both the anatomy and the disease entity [14]. Therefore, all sequences
have some advantages and drawbacks in visualizing MS lesions in various parts of
the brain.

At this point, we have seen why MRI has become a powerful technique in clinical
practice for MS. Thanks to the presence of water molecules in the brain, and more
precisely, hydrogen nuclei, MRI scanners can provide volumetric soft tissue inform-
ation with a high contrast. Moreover, by tuning the MRI parameters, such as the
pulse sequence or relaxation times, different volume sequences can be acquired. The
most widely used images in MS trials are PD-w, T1-w, T2-w, and FLAIR. Focusing
on MS lesions, they can be classified into 3 groups (T2-w lesions, T1-w lesions, and
enhancing lesions) depending on their pathology and properties in other images (see
Figure 2.3).

T2-w lesions

T2-w SE sequences consists of two sequences one with a short TE (PD-w) and one
with a long TE (T2-w) images, and are called dual echo images [42]. In T2-w
sequences, the characteristic appearance of MS is bright hyperintense lesions (HL),
reflecting their increased water content (see Figure 2.3.a-c). The signal increase
indicates edema, inflammation, demyelination, reactive gliosis and/or axonal loss in
proportions that differ from lesion to lesion. They are typically discrete and focal
in the early stages of the disease, but become confluent as the disease progresses.

These lesions are more frequent in periventricular areas and also typically seen in
juxtacortical, infratentorial and temporal regions (see Figure 2.4). In PD-w images,
the periventricular lesions are easily identified [43, 45] because of the better contrast
between periventricular MS lesions and CSF when compared to T2-w images, but
suffer more from flow artifacts, particularly in the posterior cranial fossa, which
makes it difficult to identify infratentorial lesions. As FLAIR images produce heavily
T2-w images by suppressing the signal from CSF, they can increase the noticeability
of lesions, particularly those located in the periventricular area. However, they are
less sensitive in the depiction of plaques involving the brainstem and cerebellum [43].

T1-w lesions

Unlike T2-w lesions, MS lesions in T1-w sequences can be both hyperintense and
hypointense. Approximately 10% to 20% of T2-w HL are also visible as areas of low
signal intensity compared with normal appearing white matter (NAWM) in T1-w
images, so called black holes (BH) (see Figure 2.3.d) [17]. These T1-w BH have a
different pathological substrate that depends, in part, on the lesion’s age. Chronic
black holes correlate pathologically with the most severe demyelination and axonal
loss, indicating areas of irreversible tissue damage. T1-w images have a higher
specificity than T2-w images for detecting lesions with irreversible tissue damage
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Figure 2.3: Multiple sclerosis lesion types. a), b) and c) are PD-w, T2-w and
FLAIR images of a patient with hyperintense lesions, respectively. d) T1-w image
of a patient with hypointense lesions (black hole). e) and f) are contrast-enhanced
T1-w and PD-w images of a patient depicting enhanced MS lesions in T1-w and their
corresponding hyperintense lesions in PD-w, respectively. Images from [43, 44].

Figure 2.4: Multiple sclerosis lesion location within the brain: a) peri-ventricular,
b) juxtacortical, c) infratentorial. (d) cortical lesions which can be classified into
leuko-cortical (type 1), intracortical (type 2), subpial (type 3) and lesions that extend
to the entire width of the cortex (type 4). Images from [8, 44].
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and may serve as surrogate markers of the disability progression in clinical trials.

Enhancing lesions

These lesions appear as bright spots in T1-w images after applying a contrast agent,
commonly Gadolinium. Gadolinium-enhanced T1-w imaging (consisting of applying
a contrast agent before acquiring the image) is highly sensitive in detecting inflam-
matory activity. This technique detects disease activity 5 to 10 times more frequently
than clinical evaluation of relapses, suggesting that most of these enhancing lesions
(EL) are clinically silent. Individual and temporal MRI studies have shown that the
formation of new MS plaques is often associated with contrast enhancement, mainly
in the acute and relapsing stages of the disease. Approximately 65-80% of contrast
enhancing lesions have a corresponding hypointensity in native T1-w images (see
Figure 2.3.e-f) [43] and these acute hypointense lesions may become isointense or
develop into BL lesions.

2.2 A review of brain MRI analysis in MS

Manual analysis of brain MR scans is, in practice, a highly time-consuming task. It
is both challenging and time-consuming because of the large number of MRI slices
that compose the three-dimensional information for each patient. Moreover, it is
prone to intra-observer variability (the same study analyzed by the same neuroradi-
ologist at different times) and inter-observer variability (the same study analyzed by
different neuroradiologists). These conditions have led since the early nineties to the
development of a wide number of methods for preprocessing and lesion and tissue
segmentation, with the aim of reducing the time needed for manual interaction and
the inherent variability of manual annotations [46, 47, 48].

2.2.1 Preprocessing of brain MR images

The automatic analysis of brain MR images is difficult because of variable ima-
ging parameters, overlapping intensities, noise, partial volume, gradients, motion,
echoes, blurred edges, normal anatomical variations and susceptibility artifacts [49].
Brain MR images, obtained directly from the scanner, contain the whole head and
sometimes the neck. Images may suffer from intensity inhomogeneities or intensity
non-uniformity. Also, different MR images may need to be aligned to a common
space. So, preprocessing of brain MR images is a key step before starting any
processing and analysis of the images by automatic approaches. The following sub-
section briefly describe the main preprocessing steps for brain MR images.
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Figure 2.5: MRI preprocessing steps. a) T1-w image sequence. b) Computed
brain mask using the ROBEX approach [50] and c) skull stripped T1-w sequence .
d) Estimated T1-w bias-field using the N4 method proposed by [51].

Brain extraction

Acquired brain MR volumes incorporate non-brain tissue parts of the head such
as eyes, fat, spinal cord or the skull. Skull stripping, also know as whole brain
segmentation, is the process of extracting the brain tissue from nonbrain (see Figure
2.5b). This process of removing nonbrain tissue is the first module of most brain
MRI studies. Many applications such as brain morphometry, brain volumetry, and
cortical surface reconstructions require stripped MR scans [50]. The presence of non-
brain regions affects the image histogram distribution and alters the segmentation
performance of both tissues and lesions. Among the different methods proposed for
skull-stripping [22, 52, 53], methods such as Brain Extraction Tool (BET) [54] and
Brain Surface Extractor (BSE) [55] are being replaced by more modern methods
such as ROBEX [50] and BEaST [56].

Bias field correction

Intensity inhomogeneity, also know as intensity nonuniformity or bias field, is an ad-
verse phenomenon that appears in images obtained by different imaging modalities,
not only in MRI but in microscopy, computer tomography, and ultrasound as well.
Intensity inhomogeneity in MRI arises from the imperfections of the image acquis-
ition process. It defines itself as a smooth intensity variation across the image (see
Figure 2.5-d). Because of this phenomenon, the intensity of the same tissue varies
with the location of the tissue within the image. Although intensity inhomogen-
eity is usually hardly noticeable to a human observer, many medical image analysis
methods, such as segmentation and registration, are highly sensitive to the spurious
variations of image intensities [57]. Note that image intensity correction process will
be performed over the brain mask obtained in the skull stripping process. Among
the available strategies [58, 59], the N3 [60] and N4 [51] methods are currently the
most widely used tools used for bias field correction.
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Figure 2.6: Histogram matching example. a) N4 normalized baseline T1-w image
(target image), b) N4 normalized follow-up T1-w image (source image), c) histogram
matched target image onto the source image, and d) histogram of (a) in red, (b) in
green, and (c) in blue.

Histogram matching

In MRI, there is no a standard and quantifiable interpretation of image intensities.
MR images taken for the same patient on the same scanner at different times may
appear different from each other due to a variety of scanner-dependent variations
and, therefore, the absolute intensity values do not have a fixed meaning [61]. His-
togram matching aims at bringing together the intensity distribution of two images
at a specified number of sample values. The work of Nyúl et al. [61] is currently the
most widely used tools for intensity normalization. The main idea of the method is
to deform the image histograms so that they match a mean histogram determined
through training. The actual matching is based on certain landmarks identified on
the histograms. In case of matching two images like matching the baseline image
to the follow-up image in case of longitudinal study, training is not needed. The
landmarks of the target image are matched to the corresponding landmarks of the
source image (see Figure 2.6).

Registration

Once the brain has been extracted in both volumes, the bias field has been correc-
ted, and the images have been normalized by histogram matching, they are ready
for the registration process. The registration process consists of aligning two objects
that are in different spaces. Registration is a key step in many automatic brain MRI
applications. It is a fundamental step for both intra- and inter- subject analysis.
Intra-subject registration is used to align different sequences from the same subject
(also known as co-registration process) [22, 62], while the inter-subject registration
is used when the source and target images usually belong to the same sequence from
different subjects or when registering a subject image to a template (atlas registra-
tion). The registration methods follow the same strategy. Basically, they deform
a source image to match a target image as much as possible by an optimization
process of some energy function and a transformation model.
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Registration is an important step in both cross-sectional and longitudinal studies.
For instance, in cross-sectional studies, when the brain of a new patient with some
unknown symptoms is compared with a healthy subject, i.e. a healthy brain without
anatomical malformations, they also have to be aligned, while in longitudinal studies,
to quantify the evolution of a disease, the patient must undergo follow-up scans at
regular intervals, and the position of the head inside the scanner can be different
every time so the different scans must be aligned in order to be comparable. Two
brains are perfectly aligned when the corresponding voxel in both scans have the
same physical spatial localization.

Several surveys and reviews [63, 64, 65] have compared the different registration
techniques, but they are mainly based on two steps:

• Rigid and affine registration: is well-suited when there is no big differ-
ence between the two images. In rigid registration, the matching of two im-
ages is performed by finding the rotation and translation (6 degree-of-freedom
(DOF)), while in affine registration, a 12 DOF includes shape recovering (scal-
ing and shearing), that optimize some mutual function of the images.

• Nonrigid registration: allows the deformation of each pixel locally depend-
ing on their local similarity and position. These algorithms may need a regular-
ization term in order to control the deformations since they can adopt undesir-
able effects. Methods can be classified into classical optimization approaches
or learning-based approaches. Deformation models differentiate between these
methods, elastic or hyperelastic models [66], viscous fluid [67, 68] and Demons
(optical flow) [69, 70], more suitable for large deformations, and free form
deformation (B-splines) methods [71], a smooth and continuous deformation
controlled by a mesh of control points.

Lesion filling

In MS, when hypointense WM lesions are not included in the segmentation model,
they have to be preprocessed before tissue segmentation in order to reduce the
effects of WM lesions on the segmentation. Historically, WM lesions have been
masked out of the T1-w before segmentation, and their volume added to the WM
afterwards [72]. Although this method effectively reduces the error in tissue volume,
it has been shown in several studies that this approach is not optimal [73, 74],
because on images with high lesion load, the lack of lesion voxels may be modifying
the original WM tissue distribution of the image, introducing significant differences
in tissue segmentation.

In this respect, several strategies have proposed inpainting lesions on the T1-w
with signal intensities of the normal appearing WM before tissue segmentation [73,
74, 75, 76], a process known in the literature as lesion filling (see Figure 2.7 for
an example). However, most of the available lesion filling methods require manual
delineations of lesions, which may be a tedious, challenging and time-consuming task
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Figure 2.7: Lesion filling example on a slice of a T1-w scan. a) T1-w image
sequence containing WM lesions (depicted by red arrows). b) Segmented T1-w
sequence containing lesions. GM is depicted in light gray color, WM in white color
and CSF in dark gray color. c) T1-w sequence after lesion filling. d) Segmented
lesion filled T1-w sequence.

depending on the characteristics of the image [31]. When available, lesion filling has
demonstrated a significant reduction not only in the associated errors of WM lesions
in tissue volume measurements [77], but also in image registration [35, 76, 78] and
cortical thickness measurements [75].

2.2.2 Brain tissue segmentation in MS

Brain tissue segmentation is the process of partitioning the brain into its three main
tissues WM, GM, and CSF (see Figure 2.8). It is considered as an active research
topic in medical image analysis as it provides doctors with meaningful quantitative
information, such as tissue volume and shape measurements [40]. This information is
widely used to diagnose brain pathologies and evaluate progression through regular
MRI analysis over time [11, 79]. It is also important for neuroscientific studies, such
as cortical surface extraction [80, 81], atrophy and volume measurements [23, 82],
brain extraction [22, 83, 84], MS lesion segmentation [24, 27, 85], etc. It has been
proved that there is a correlation between brain tissue atrophy measurements and
MS disability status [86, 87].

A wide number of brain tissue segmentation methods have been proposed so
far, usually on T1-w sequences, as this modality has clear difference in the intensity
distributions of these three tissues. The well-known Markov random field is the basis
of the FAST [88], which is part of the FMRI Software Library. SPM5/8/12 are three
of the available versions of the SPM toolbox. This toolbox includes several image
processing methods, one of which is the tissue segmentation based on a Gaussian
Mixture Model, atlas registration and a bias field correction performed iteratively
[89]. Most of the unsupervised automatic tissue segmentation methods in the current
state of the art rely only on the signal intensity in T1-w sequences [90, 91, 92]. In
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Figure 2.8: MRI brain tissue segmentation example using FAST [88]. a) T1-w
image. b), c) and d) are WM, GM and CSF tissue segmentations, respectively.

contrast, supervised learning approaches also combine T1-w sequences with other
modalities such as T2-w and PD-w [93, 94, 95]. Many supervised machine learning
methods have been proposed after the CNN era [96, 97, 98].

The brain tissue segmentation is also an important step when detecting neuro-
logical lesions, usually present in WM but also seen in GM. Therefore, the tissue
information is commonly used for lesion detection, although, at the same time, the
lesions may affect the tissue segmentation accuracy. Most of these brain tissue seg-
mentation methods are not designed to deal explicitly with MS lesions, which can
reduce their accuracy when applied to MS patient images [38, 73, 74, 99]. A com-
monly used technique to overcome this issue consists of inpainting the lesions (see
section 2.2.1) on the T1-w sequence with signal intensities of the NAWM before seg-
mentation, achieving a significant reduction in the associated errors of WM lesions
in tissue volume measurements [100].

2.2.3 MS lesion segmentation

Automatic segmentation of MS lesions in brain MRI has been widely investigated
in recent years with the goal of helping MS diagnosis and patient follow-up. These
plaques of demyelination are typically observed in MRI with different contrasts
depending on the image sequence. cMRI described in 2.1.1 are highly sensitive
in detecting MS plaques and can provide quantitative assessment of inflammatory
activity and lesion load. They are commonly seen as hyperintense lesions in T2-w,
PD-w and FLAIR and usually appear as dark areas in T1-w images (see Figure 2.2).
Both acute and chronic MS plaques appear as focal high-signal intensity areas on
T2-w sequences, reflecting their increased tissue water content. The increase in the
signal indicates edema, inflammation, demyelination, reactive gliosis and/or axonal
loss in proportions that differ from lesion to lesion. They are typically discrete
and focal at the early stages of the disease, but become confluent as the disease
progresses [101].
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MS lesions are located in characteristic regions of the brain (see Figure 2.4),
that include the periventricular, cortical or juxtacortical, and infratentorial regions.
Cortical lesions, at the same time, can be classified according to their location within
the GM as leuko-cortical (involving the deeper layers of the gray matter as well as
the adjacent white matter at the gray/white matter junction), intra-cortical (small
demyelinated lesions often centered around blood vessels and confined within the
cortex), subpial (extending from the pial surface into the cortex) and lesions that
extend to the entire width of the cortex.

As seen in section 1.3, McDonald criteria aims to use MR images in order to
provide evidence of lesion dissemination in space and time, conditions that have to be
fulfilled for a definite MS diagnosis. So, an automatic system to detect and segment
MS lesions would help in the clinical practice to diagnose, as well as to evaluate
a patient’s follow-up and the effect of drug therapy. In what follows, a review of
cross-sectional MS lesion segmentation (MS lesion segmentation in a single time
point) and longitudinal MS lesion segmentation (MS lesion segmentation between
successive time points) is presented.

Cross-sectional MS lesion segmentation

A wide number of automated WM lesion segmentation techniques have been pro-
posed over the last few years. The voxel intensity is the most common feature used
for lesion segmentation [102]. Analyzing the literature, one may distinguish between
single-channel or multi-channel approaches, i.e. approaches that use only one MR
image or those that combine several images, the later being the most widely used
in the literature [101]. Single-channel approaches are mainly used to segment the
brain tissues. For instance, T1-w images are widely used for this purpose, since they
show the best contrast between the three main brain tissues: WM, GM and CSF.
This initial tissue segmentation may then be used to help obtain the final lesion
segmentation, and T2-w, PD-w, and FLAIR are the classical images for detecting
MS lesions. The work of Khayati et al. [103] is an example of the single-channel
approach in which the MS lesions are segmented using just the FLAIR sequence.
Spatial information features are also used in some approaches. These features can
be included using Markov Random Fields [104, 105], Fuzzy Connectedness [106] or
probabilistic atlas [107].

Based on a review proposed by Lladó et al. [101], methods can be classified into
either supervised and unsupervised segmentation strategies (see Figure 2.9). In su-
pervised approaches, MS lesion segmentation is based on using some kind of a priori
information or knowledge. These methods can be subclassified into either atlas-
based methods or manual segmentation-based methods. In atlas-based methods
[108, 109, 110, 111, 112, 113], the priori information may come from both statistical
and topological atlases. A statistical atlas provides the prior probability of each voxel
to belong to a particular tissue class while a topological atlas is usually used to pre-
serve topology and to lower the influence of competing intensity clusters in regions
that are spatially disconnected. As a drawback, these approaches rely on building
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Figure 2.9: Classification of cross-sectional MS lesion analysis based on a review
proposed by Lladó et al. [101]

an atlas, which is not a simple task. In addition, they also introduce the registration
problem into the MS lesion segmentation. Note that this registration step is even
more difficult when dealing with cases with severe atrophy, large numbers of lesions,
etc. In manual segmentation-based methods[114, 115, 116, 117, 118, 119, 120, 121],
manually-segmented images annotated by neuroradiologists are used to segment the
MS lesions. These methods use mainly the image intensities of different MR images
to train a classifier for the segmentation purpose. Note that unlike atlas-based ap-
proaches these approaches do not need any registration process between the analyzed
images and the atlas. However, some of these methods include the use of registra-
tion algorithms that focus on the intra-sequence and inter-sequence preprocessing
registration steps.

In the unsupervised strategies, where no prior knowledge is used, methods can be
subclassified into either methods that segment brain tissue to help lesion segment-
ation or methods that use only the lesion properties for segmentation. In former
approaches [122, 123, 124, 125], there are methods that either segment the tissue first
and then the MS lesions, or segment the tissue and the lesions at the same time. In
the later approaches [27, 126, 127, 128, 129, 130, 131], the methods directly segment
the lesions according to their properties, without providing tissue segmentation.
Segmenting the tissue help neuroradiologists to evaluate the GM tissue volumetry
and monitor the progression of cerebral atrophy.

Recently, the literature offers several methods based on CNNs for MS lesion
segmentation in cross-sectional images [132, 133, 134, 135, 136, 137]. Interestingly,
excellent results have been reported in the last few years within this topic, with
methods achieving segmentations that are close to human expert inter-rater variab-
ility. For instance, Valverde et al. [28] proposed an automated method for WM lesion
segmentation of MS patient images. Within this MS lesion segmentation framework,
a cascade of two identical CNNs is optimized, where the first network is trained to
be more sensitive to revealing possible candidate lesion voxels, while the second net-
work is trained to reduce the number of false positive outcomes. Their method was
the best ranked approach on the MICCAI2008 challenge, outperforming the rest of
60 participant methods when using all the available input modalities (T1-w, T2-w
and FLAIR), while still in the top-rank (3rd position) when using only T1-w and
FLAIR modalities. For a complete description of the details and motivations for the



27 2.2. A review of brain MRI analysis in MS

Figure 2.10: An example of MS lesion longitudinal analysis. a) baseline PD-w,
b) follow-up PD-w, c) the subtraction and d) the manual lesion annotations of the
slices performed by an expert radiologist overlaid in green on the follow-up image.

proposed architecture, please refer to the original publication.

Longitudinal MS lesion segmentation

Follow-up brain MRI is required in patients who have not been diagnosed yet as
MS patients but they show clinical and radiological findings suggestive to MS [138].
3-6 months were suggested to be the optimal interval between the baseline and the
follow-up scan. A third scan can be acquired 6-12 months later if no new lesions
are seen the first follow-up scan [138, 139]. Different methodologies and approaches
have been proposed for getting MS biomarkers from individual patients by combining
clinical and MRI criteria evaluated after 6 or 12 months from therapy start [140,
141, 142, 143, 144, 145]. However, the detection of this disease activity is performed
visually by comparing the follow-up and baseline scans. Due to the presence of small
lesions, misregistration, and high inter-/intra-observer variability, it is difficult to
visually detect active T2-w lesions in patients with MS [146]. Automatic methods
can overcome these issues by eliminating stable lesions and also highlighting evolving
T2-w lesions [147, 148]. Figure 2.10 shows an example of MS lesion longitudinal
analysis of a patient’s brain taken with a year’s difference, together with the manual
annotations made by an expert.

Based on an another review proposed by Lladó et al. [31], methods can be classi-
fied into either lesion detection approaches or change detection approaches (see Fig-
ure 2.11). In the lesion detection approaches, both static and dynamic MS lesions on
a single-time MR volume of a patient are detected. These segmentation-based meth-
ods, which can be supervised or unsupervised, rely on the intensity homogeneities
of the tissues and typically apply data mining techniques (clustering, classification)
to distinguish lesions from normal tissues. In longitudinal analysis, lesion quantific-
ation approach is subsequently needed to compute the volumetric changes of each
segmented lesion between two time points for the MS lesion evolution. Recently,
Schmidt et al. [149] proposed an automated algorithm for segmentation of WM
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Figure 2.11: Classification of longitudinal MS lesion analysis methods based on a
review proposed by Lladó et al. [31].

lesion (WML) changes by extending their earlier work on cross-sectional WML seg-
mentation [85]. Their algorithm requires three-dimensional gradient echo T1-w and
FLAIR images at 3T as well as available cross-sectional lesion segmentations of both
time points. Preprocessing steps include lesion filling and intra-subject registration.
For segmentation of lesion changes, initial lesion maps of different time points are
fused; herein changes in intensity are analyzed at the voxel level. Significance of
lesion change is estimated by comparison with the difference distribution of FLAIR
intensities within normal appearing white matter.

In the change detection approaches, the differences between successive MRI con-
trols at both 2D and 3D image levels are analyzed not at a single time point. An
MS lesion is generally seen as the combination of two different effects, tissue trans-
formation and tissue deformation [150]. Tissue transformation refers to the intensity
change in the tissue of the lesion, while tissue deformation refers to the modification
of its surrounding tissue, due to lesion expansion or contraction. These methods
can be subclassified into either intensity-based approaches or deformation-based ap-
proaches.

In the intensity-based approaches, voxel-wise comparisons are performed between
successive scans. Moraal et al. [151] mentioned that subtraction imaging allowed the
direct quantification of positive and negative disease activity. They also mentioned
that 3D subtraction imaging increased the detection of active MS lesions in various
parts of the brain compared with 2D subtraction imaging [147]. Elliott et al. [152]
presented a framework for automated detection of new MS lesions using a two-
stage classifier that first performed a joint Bayesian classification of tissue classes
at each voxel of the baseline and follow-up images using intensities and subtraction
values, and then a lesion-level classification was performed using a random forest
classifier. Ganiler et al. [32] extended the pipelines of Moraal et al. [147] and Elliott
et al. [152] by adding multi-channel information and several additional steps such
as constraining the region of interest to the WM and using simple postprocessing
steps based on the baseline and follow-up image intensities. Supervised learning is a
machine learning task which consists in predicting a function from labeled training
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Figure 2.12: An example of the DF inside a new lesion. All arrows point to the
lesion center [33].

data [153]. Different algorithms can be used to learn a mapping function from
input feature vectors to the desired output values [154, 155]. Sweeney et al. [156]
proposed the automated SuBLIME method for segmenting lesion incidence between
two MRI studies based on a supervised LR model trained only using features from
the follow-up study and the subtraction between timepoints.

In the deformation-based approaches, the new T2-w lesions detection is per-
formed by analyzing the DFs obtained by nonrigid registration between success-
ive scans. Nonrigid registration provides a discrete local displacement field that
defines the deformation occurring between two images (see Figure 2.12). Thirion
and Calmon [150] used the DF to detect evolving lesions in longitudinal MRI. They
defined several DF operators to automatically detect regions that present changes.
They proposed to use both the divergence and the norm of the displacement vector
fields in order to be sensitive to deformation and intensity change. Therefore, high
values of the norm indicated large deformation areas, while high divergence indic-
ated evolving lesions, where the sign of the divergence operator showed whether the
lesion was growing or shrinking. Rey et al. [157] improved the approach of Thirion
and Calmon [150] by using the Jacobian operator to determine local volume changes
instead of using the divergence and norm of the vector fields. Furthermore, they
used multiresolution levels to avoid the influence of the motion in the center of a
lesion by the vectors in the boundary. Using the Jacobian operator, it is possible to
distinguish the lesion’s evolution. As it is commonly accepted, the authors stated
that a Jacobian operator larger than 1 indicates a local expansion, while smaller
values indicate local shrinking.
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New lesion detection approaches have been also proposed combining information
from different sources. For instance, Fartaria et al. [158] proposed a strategy for lon-
gitudinal analysis of MS lesions based on a combination of segmentation-based and
intensity-based approaches to assess the performance of the partial-volume aware
lesion segmentation tool and to propose a method for the generation of a lesion
progression map between two time points. Moreover, several methods have been
proposed as a combinations of intensity-based and deformation-based approaches.
Cabezas et al. [33] improved the subtraction pipeline proposed by Ganiler et al. [32]
by combining subtraction and DF operators to decrease the number of false positive
lesions detected by the subtraction pipeline. In their work, an automated threshold
was computed for each subtraction image (PD-w, T2-w, and FLAIR) and applied
separately to obtain 3 initial lesion masks. The thresholds were computed as the
mean of the subtraction image within the WM plus 5 standard deviations to guar-
antee that only hyperintense regions were detected and to maintain a large number
of true-positives (TPs). Lesions smaller than 3 voxels were excluded to reduce the
effects of noise. The intersection of the 3 masks (PD-w, T2-w, and FLAIR) was used
to differentiate between errors and true lesions in each mask. Finally, two different
postprocessing approaches were used independently to refine the initial generated
lesion mask. The first one was based on intensity by applying different intensity-
based rules to the baseline and follow-up images while the second was based on DFs
in which Divergence, Jacobian, and Concentricity were used to accept or reject the
candidate lesions [33].

2.3 Machine learning for medical image analysis

2.3.1 What is machine learning?

Machine learning (ML) is an exciting field of research in computer science and engin-
eering. It is considered a branch of artificial intelligence (AI) [159]. ML contains a set
of methods, which enable a machine to learn meaningful patterns from data directly
with minimal human interaction. More recently, machines have shown that they
are capable of learning and even mastering tasks that were thought to be too com-
plex for machines, showing that machine learning algorithms are potentially useful
components of computer-aided diagnosis and decision support systems. Computers
seem to be able to recognize patterns that are beyond human perception which has
led to increased interest in the field of ML, and specifically, how it might be applied
to medical images [159].

As shown in Figure 2.13, the most common machine learning techniques are as
follows:

• Supervised learning: a supervised learning algorithm takes a known set
of input data and known responses to the data (output) and trains a model
to generate reasonable predictions for the response to new data. This is the



31 2.3. Machine learning for medical image analysis

Figure 2.13: ML Techniques. Image extracted from https://www.mathworks.com/
help/stats/machine-learning-in-matlab.html.

most common scenario associated with classification, regression, and ranking
problems. Supervised learning uses classification and regression techniques
to develop predictive models. The classification techniques predict discrete
responses while the regression techniques predict continuous responses. Ex-
amples of supervised learning algorithms include support vector machine [160],
decision tree [161], linear regression [162], logistic regression [163, 164], naive
Bayes [163, 165], k-nearest neighbor [166], random forest [167], AdaBoost, and
neural network methods [168].

• Unsupervised learning: an unsupervised learning finds hidden patterns or
intrinsic structures in data. It is used to draw inferences from datasets consist-
ing of input data without labeled responses. The most common unsupervised
learning technique is clustering which analyzes data to find hidden patterns or
groupings. The algorithm system determines how many groups there are and
how to separate them. Examples of unsupervised learning algorithm systems
include K-means [169], mean shift [169, 170], affinity propagation [171], hier-
archical clustering [171, 172], DBSCAN (density-based spatial clustering of
applications with noise) [173], Gaussian mixture modeling [173, 174], Markov
random fields [175], and fuzzy C-means systems [176].

2.3.2 Neural networks

The neural network (or artificial neural network or ANN) is derived from the biolo-
gical concept of neurons which are the basic computational unit of the brain. Figure
2.14 shows a cartoon drawing of a biological neuron and a common mathematical
model. Each neuron receives input signals from its dendrites and produces out-
put signals along its (single) axon. The axon eventually branches out and connects
via synapses to dendrites of other neurons [177]. In the computational model of a
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Figure 2.14: Biological neuron (left) and its mathematical model (right). A real
brain neuron receive signals from other neuron through dendrites. The neuron sends
signals at spikes of electrical activity through a long thin stand known as an axon
and an axon splits this signals through synapse and send it to the other neurons.
The mathematical model of a neuron is nothing more than a set of inputs, a set of
weights, and an activation function. The neuron translates these inputs into a single
output, which can then be picked up as input for another layer of neurons later on.
Image extracted from http://cs231n.github.io/neural-networks-1/.

neuron (the artificial neuron), the signals that travel along the axons (e.g. x0) inter-
act multiplicatively (e.g. w0x0) with the dendrites of the other neuron based on the
synaptic strength at that synapse (e.g. w0). The idea is that the synaptic strengths
(the weights w) are learnable and control the strength of influence of one neuron on
another. In the basic model, the dendrites carry the signal to the cell body where
they all get summed. If the final sum is above a certain threshold, the neuron can
fire, sending a spike along its axon. In the computational model, the firing rate
of the neuron is modeled with an activation function f . The activation function
represents a linear combination of the input x to the neuron and the parameters w,
followed by an element-wise nonlinearity σ(), referred to as a transfer function:

a = σ(wT ∗ x + b).

Typical transfer functions for traditional neural networks are the sigmoid and hy-
perbolic tangent function.

ANN consists of large number of simple processing elements that are intercon-
nected in an acyclic graph with each [178, 179]. ANN models are often organized
into distinct layers of neurons. For regular neural networks, the most common
layer type is the fully-connected layer in which neurons between two adjacent lay-
ers are fully pairwise connected, but neurons within a single layer share no con-
nections. Figure 2.15 shows two examples of ANN topologies that use a stack of
fully-connected layers. The multi-layered perceptrons (MLP), the most well-known
of the traditional neural networks, have several layers of these transformations. In
MLP, there is an input layer, output layer, and some layers in between. Layers
in between the input and output are often referred to as hidden layers. Moreover,
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Figure 2.15: A 2-layer Neural Network (one hidden layer of 4 neurons (or units)
and one output layer with 2 neurons), and three inputs (left). A 3-layer neural
network with three inputs, two hidden layers of 4 neurons each and one output
layer (right). Notice that in both cases there are connections between neurons
across layers, but not within a layer. Image extracted from http://cs231n.github.
io/neural-networks-1/.

the neurons of the final layer of the network do not have often activation function.
This is because the last output layer is usually taken to represent the class scores
(e.g. in classification). So, a distribution over classes is generated by feeding the
activations in the final layer through a softmax function and the network is trained
using maximum likelihood. When a neural network contains multiple hidden layers
it is typically considered a deep neural network, hence the term deep learning.

2.3.3 Deep learning

As computational power is getting improved and enormous amounts of data is be-
coming available, deep learning, also known as deep neural network learning has
become the default machine-learning technique because it can learn much more
sophisticated patterns than conventional machine-learning techniques. Conventional
machine-learning techniques were limited in their ability to process data in their raw
form. To construct a ML system, a feature extractor should be designed and en-
gineered carefully so that it can transformed the raw data (such as the pixel values
of an image) into a suitable internal representation or feature vector from which
the learning subsystem, often a classifier, could detect or classify patterns in the
input [180].

Unlike conventional machine-learning techniques, deep learning methods simplify
the feature extraction process and they could be applied to raw data directly (see
Figure 2.16). This is very important for the field of medical image analysis since
it allows more researchers to exploit new ideas easier and faster. New learning
algorithms and architectures that are currently being developed for deep neural
networks will only accelerate this progress. Deep learning has been shown to produce
competitive results in medical applications such as cancer cell classification, lesion
detection, organ segmentation or image enhancement [181, 182]. However, there are
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Figure 2.16: ML in medical image analysis before and after deep learning. (a) ML
before deep learning: standard ML for classifying lesions. Features are extracted
from a segmented lesion in an image. Those features are entered as input to an ML
model with feature input (classifier) such as an MLP and a support vector machine
(SVM). (b) ML after deep learning: voxel values from an image are directly entered
as input to an ML model such as a CNN and a deep belief net (DBN).

some drawbacks of deep learning such as the difficulties to obtain enough data and
the necessity to have data from several sites (i.e., from different scanners/protocols
in case of medical imaging), otherwise the system will not be robust enough and
highly dependent on the training data.

Early neural networks were typically only a few (< 5) layers deep, mainly because
the computing power was not sufficient for more layers and owing to challenges in
updating the weights properly. Deep learning refers to the use of neural networks
with many layers. The parallel computing power of graphics processing units (GPU)
such as those built by NVidia Corporation enabled this kind of deeper network to
come to the world. Some deep learning algorithm tools are deep neural networks,
stacked auto encoders, deep Boltzmann machines, and CNNs. We will focus on
CNNs because these are most commonly applied to medical image analysis.

2.3.4 Convolutional neural networks (CNNs/ConvNets)

CNNs are designed to process data that come in the form of multiple arrays, for
example a color image composed of three 2D arrays containing pixel intensities in
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Figure 2.17: General CNN architecture.

the three color channels. There are many data modalities in the form of multiple
arrays. For instance, 1D for signals and sequences, including language; 2D for images
or audio spectrograms; and 3D medical images. There are four key ideas behind
CNNs that take advantage of the properties of natural signals: local connections,
shared weights, pooling and the use of many layers [180].

CNNs are similar to regular neural networks. The difference is that CNNs assume
that the inputs have a geometric relationship like the rows and columns of images.
The input layer of a CNN has neurons arranged to produce a convolution of a small
image (i.e., kernel) with the image. This kernel is then moved across the image, and
its output at each location as it moves across the input image creates an output value
[159]. An important benefit of CNN deep learning algorithms, as compared with
traditional machine learning methods, is that there is no need to compute features
as a first step. The CNN effectively finds the important features as a part of its
search process. As a result, the bias of testing only those features that a human
believes to be important is eliminated. The task of computing many features and
then selecting those that seem to be the most important also is eliminated [159, 183].

Architecture Overview

Figure 2.17 depicts the general architecture of CNNs. The three main types of layers
to build CNNs architectures are as follows:

• Convolutional Layer (CONV layer). It is the core building block of a
CNN. The layer’s parameters consist of a set of learnable filters (or kernels),
which have a small receptive field, but extend through the full depth of the
input volume. During the forward pass, each filter is convolved across the
width and height of the input volume, computing the dot product between
the entries of the filter and the input, producing a 2-dimensional activation
map of that filter. As a result, the network learns filters that activate when
detect some specific type of feature at some spatial position in the input. For
instance, a CONV layer with 12 filters will produce a separate 2-dimensional
activation map for each filter. These activation maps will be stacked along the
depth dimension and produce the output volume.
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• Activation Layer. Every activation function (or nonlinearity) takes a single
number and performs a certain fixed mathematical operation on it. There are
several activation functions like Sigmoid, Tanh, (rectified linear unit) ReLU.
For instance, ReLU effectively removes negative values from an activation
map by setting them to zero [184]. It increases the nonlinear properties of the
decision function and of the overall network without affecting the receptive
fields of the convolution layer. ReLU is often preferred to other functions
because it trains the neural network several times faster without a significant
penalty to generalization accuracy [185].

• Pooling Layer. It is an important layer in CNNs. It is a non-trainable
layer which takes groups of inputs and applies a simple function to each of
these groups independently as a form of nonlinear down-sampling. The most
common functions used are the max function and the mean function. When
the max function is used, the pooling layer will take groups of inputs and
output the maximum value for each one of these groups. In the same way,
if the mean function is used, the pooling layer computes the mean (average)
for each group of inputs. It has different usages like spatial size reduction or
overfitting control.

• Fully-connected Layer (FC layer). Neurons in a fully connected layer
have full connections to all activations in the previous layer, as seen in regular
Neural Networks. It can be computed with a matrix multiplication followed
by a bias offset.

More changes can be done to this architecture like the number of convolutional layers
and the size and number of kernels in each layer, stacking of different convolutional
layers, different activation functions, and the number of the FC layers.

There are two key differences between MLPs and CNNs. First, in CNNs weights
in the network are shared in such a way that the network performs convolution op-
erations on images. This way, the model does not need to learn separate detectors
for the same object occurring at different positions in an image, making the network
equivariant with respect to translations of the input. It also drastically reduces
the amount of parameters (i.e. the number of weights no longer depends on the
size of the input image) that need to be learned. The second key difference between
CNNs and MLPs, is the typical incorporation of pooling layers in CNNs, where pixel
values of neighborhoods are aggregated using a permutation invariant function, typ-
ically the max or mean operation. This can induce a certain amount of translation
invariance and increase the receptive field of subsequent convolutional layers. At
the end of the convolutional stream of the network, FC layers (i.e. regular neural
network layers) are usually added, where weights are no longer shared. Similar to
MLPs, a distribution over classes is generated by feeding the activations in the fi-
nal layer through a softmax function and the network is trained using maximum
likelihood [181].

There are several CNNs architectures that are famous and common in the field of



37 2.3. Machine learning for medical image analysis

computer vision. In 1998, LeCun et al. [186] developed LeNet which was relatively
shallow, consisting of two CONV layers (see Figure 2.18.a). It was used to read
zip codes, digits, etc. In 2012, Krizhevsky et al. [185] developed AlexNet which
was the first work that popularized CNNs in computer vision. It consisted of five
CONV layers (see Figure 2.18.b). AlexNet used rectified linear units instead of the
hyperbolic tangent as activation function, which are now the most common choice
in CNNs [181]. After 2012 many novel deeper architectures were developed. They
were based on stacking smaller kernels, instead of using a single layer of kernels with
a large receptive field, a similar function can be represented with less parameters.
Examples of these architectures are VGG16, VGG19 [187], GoogLeNet [188], and
ResNet [189].

Fortunately, the convolution and dot product are both linear operators and thus
inner products can be written as convolutions and vice versa. The only difference
between FC and CONV layers is that the neurons in the CONV layer are connected
only to a local region in the input, and that many of the neurons in a CONV volume
share parameters. By rewriting the fully connected layers as convolutions, the CNN
can take input images larger than it was trained on and produce a likelihood map,
rather than an output for a single pixel. The resulting network is called fully convo-
lutional network (FCNN) [190]. FCNN can then be applied to an entire input image
or volume in an efficient fashion (see Figure 2.18.f). Ronneberger et al. [191] pro-
posed the U-net architecture, comprising a regular FCNN followed by an upsampling
part where up-convolutions are used to increase the image size, coined contractive
and expansive paths. The authors combined it with the so called skip-connections
to directly connect opposing contracting and expanding convolutional layers (see
Figure 2.18.g).

CNNs can simply be used to classify each pixel in the image individually, by
presenting it with patches extracted around the particular pixel [192]. The training
data in terms of patches is much larger than the number of training images. There
are drawbacks of this approach. First, it is quite slow because the network must be
run separately for each patch, and there is a lot of redundancy due to overlapping
patches. Secondly, there is a trade-off between localization accuracy and the use of
context. Larger patches require more max-pooling layers that reduce the localization
accuracy, while small patches allow the network to see only little context [191].

2.3.5 Deep learning: hardware and software

As mentioned before, the widespread availability of GPU and GPU-computing lib-
raries (CUDA, OpenCL) are behind the popularity of deep learning methods. GPUs
are highly parallel computing engines, which have an order of magnitude more exe-
cution threads than central processing units (CPUs). With current hardware, deep
learning on GPUs is typically 10–30 times faster than on CPUs [181].

Next to hardware, the other driving force behind the popularity of deep learning
methods is the wide availability of open-source software packages. These libraries
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Figure 2.18: Examples of CNN architectures. a) LeNet [186]. b) AlexNet [185].
c) and d) VGG16 and VGG19, respectively [187]. e) FCNN [190]. f) U-net [191].
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provide efficient GPU implementations of important operations in neural networks,
such as convolutions; allowing the user to implement ideas at a high level rather
than worrying about efficient implementations. At the time of writing, the most
popular packages were:

• Caffe [193]. Provides C++ and Python interfaces, developed by graduate
students at UC Berkeley.

• Torch [194]. Provides a Lua interface and is used by, among others, Facebook
AI research.

• PyTorch [195]. A machine learning library for Python, based on the Torch
library. It is primarily developed by Facebook’s artificial-intelligence research
group.

• Theano [196]. Provides a Python interface, developed by MILA lab in
Montreal.

• Tensorflow [197]. Provides C++ and Python and interfaces, developed by
Google and is used by Google research 1.

There are third-party packages written on top of one or more of these frameworks,
such as Lasagne 2 or Keras 3.

2.3.6 Deep learning in medical image analysis

Deep neural networks are now the state-of-the-art machine learning methods across
a variety of areas, from image analysis to natural language processing, and widely
deployed in academia and industry. These developments have a huge potential for
medical imaging technology, medical data analysis, medical diagnostics and health-
care in general. Deep learning is providing exciting solutions for medical image
analysis problems and is seen as a key technology for future applications.

Figure 2.19 depicts some medical imaging applications in which deep learning has
achieved state-of-the-art results. From top-left to bottom-right: mammographic
mass classification (Kooi et al. [198]), segmentation of lesions in the brain (top
ranking in brain tumor segmentation challenges (BRATS), ischemic stroke lesion
segmentation challenge (ISLES) and MR brain image segmentation challenge (MR-
Brains) challenges), image from Ghafoorian et al. [199], leak detection in airway tree
segmentation (Charbonnier et al. [200]), diabetic retinopathy classification (Kaggle
Diabetic Retinopathy challenge 2015, image from van Grinsven et al. [201]), pro-
state segmentation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in lymph nodes

1https://www.tensorflow.org/
2https://github.com/Lasagne/Lasagne
3https://keras.io/
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Figure 2.19: Visual example of some deep learning uses in medical image analysis
[181].
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(top ranking and human expert performance in CAMELYON16), human expert per-
formance in skin lesion classification (Esteva et al. [202]), and state-of-the-art bone
suppression in x-rays, image from Yang et al. [203]).

2.3.7 Deep learning applications for brain image analysis

In brain image analysis, deep neural networks (DNNs) have been used in many differ-
ent application domains [204]. Nowadays, deep CNN architectures are widely used in
brain MRI. In brain preprocessing tasks, it has been applied by Kleesiek et al. [205]
for brain extraction, Nie et al. [206] for image construction and Yang et al. [207]
for image registration. In brain segmentation tasks, it has been applied by Guo
et al. [208] for hippocampus segmentation, Zhang et al. [96] for tissue segmentation,
Brosch et al. [209] for lesion segmentation and Kamnitsas et al. [210] for tumor seg-
mentation. Moreover, DNNs recently been applied for disorder classification by Suk
and Shen [211], Sarraf and Tofighi [212], and Shi et al. [213]. Even though brain
images are 3D volumes in all surveyed studies, some methods work in 2D, analyzing
the 3D volumes slice-by-slice. This may be because of the reduced computational
requirements or the thick slices relative to in-plane resolution in some data sets.
More recent publications had also employed 3D networks [181].

Regarding brain image analysis challenges, DNNs have completely taken over
many of them. From 2014-2018 BRATS, the 2015 longitudinal multiple sclerosis
lesion segmentation challenge, from 2013-2018 ISLES, and the 2013 MRBrains, the
top ranking methods were DL-based ones.

2.4 Discussion

As seen from this chapter, MRI is an essential tool for the diagnosis and evalu-
ation of MS. Lesion detection approaches are required to detect static lesions and
for diagnostic purposes, while either quantification of detected lesions or change
detection algorithms are needed to follow up MS patients. In this latter case, de-
formation field-based algorithms have allowed the mass effect of the lesions to be
considered. From the reviewed literature, it is clear the need to improve the perform-
ance of such methods, trying to make them more robust and accurate. We would
like to point out the importance of using prior knowledge to guide the lesion detec-
tion and segmentation. Supervised approaches that rely on similar segmented cases
usually outperform unsupervised strategies. We believe that basic supervised ML
approaches based on DF provide a good starting point for new MS lesions detection
in longitudinal analysis. We will study the effect of different DF operators combined
with voxel intensities and subtraction images to improve lesion detection on MS pa-
tients. As DL techniques are now the state-of-the-art machine learning methods in
medical image analysis, we will also explore and investigate DL techniques for new
lesion detection. To the best of our knowledge, these is no longitudinal approach
based on CNN that deals with lesion changes in brain MRIs. Other longitudinal
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approaches based on CNNs have been presented before [134], but those methods
independently provide a cross-sectional segmentation of lesions at each time point
using longitudinal information. In the following two chapters, we propose two novel
supervised new T2-w MS lesion detection approaches. One is based on a classical
LR model combining intensity and DF features, and the other one is based on the
use of a deep learning (CNN) strategy.



CHAPTER 3

A LOGISTIC REGRESSION MODEL

FOR NEW T2-W LESION DETECTION

IN MULTIPLE SCLEROSIS

3.1 Overview

As described in chapter 2, MRI allows to demonstrate with high specificity and
sensitivity the dissemination of WM lesions in space and time, a key factor in recent
diagnostic criteria [12]. Furthermore, quantification of new T2-w lesions is a high-
impact prognostic factor to predict evolution to MS or risk of disability accumulation
over time [214].

Analyzing the state-of-the art on MS lesion detection approaches in section 2.2.3,
we concluded that the effect of a lesion does not always appear as an intensity change
on the tissue where it is located (the so-called tissue transformation), but can also
influence the appearance of surrounding tissues (known as the mass effect). Ob-
serving the lesion evolution without change in intensity but with displacement on
the surrounding tissues (deformation) is also important. So, both tissue transform-
ation (changes in intensity) and tissue deformation generally occur. Following this
fact, we propose here to merge intensity- and deformation-based approaches in an
automated multi-channel supervised voxel-wise LR classification. In contrast with
the previous supervised approaches like the one of Sweeney et al. [156] that uses only
intensity features, our model will use features not only from the baseline, follow-up,
and subtraction images but also from the DF operators obtained from the nonrigid
registration between time-points scans.
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3.2 Methods

Figure 3.1 depicts the whole pipeline proposed for the detection of new T2-w lesions.
For each modality (T1-w, T2-w, PD-w, and FLAIR), an affine transformation from
baseline to follow-up is computed and the images are subtracted. Also, the images
are nonrigidly registered to get a deformation field. Afterwards, the baseline and
follow-up intensities, the subtraction values, and the DF features are used to train a
voxel-wise LR classifier. In the post-processing, the probabilistic maps are threshol-
ded to obtain a binary segmentation. In what follows, each step is explained in more
details.

3.2.1 Registration and subtraction

For each patient, T1-w and FLAIR images from the same study are registered to
the PD-w image by using a 3D multi-stage multi-resolution registration approach.
First, a 3D rigid registration with only one resolution level is performed. Then,
a 3D affine registration is performed with 3 levels of resolution. Both registration
methods are done using ITK v4 framework [215]. The Mattes Mutual Information
cost function is minimized by Regular Step Gradient Descent Optimization, and
resampling is performed by B-spline interpolation.

To perform the image subtraction, the baseline images are warped to the follow-
up space. The same 3D multi-stage multi-resolution registration approach described
above is used. The affine transformation is computed between both PD-w images
and then applied to the other images (using B-spline interpolation) to compute the
subtraction. To avoid interpolation more than one, baseline T1-w and FLAIR are
resampled using the combined affine transformation.

Since multi-channel data increases the probability of lesion activity detection [216],
the four images (T1-w, T2-w, PD-w, and FLAIR) are subtracted after the affine re-
gistration. As stated in Díez et al. [35], the rigid and affine registration methods are
not sensible to the presence of lesions, and only deformation models can show the
effect of new lesions as a distortion around those regions. DF can be obtained by
using a nonrigid registration technique. In this study, we apply the multi-resolution
Demons registration approach from ITK v.4 initialized with the previous affine trans-
formations [217]. This algorithm can produce large localized deformations and has
been widely used in brain MRI.

To be able to incorporate the DF information as features, we compute the fol-
lowing three DF operators at each voxel [33]:

• Jacobian [157]: This operator is widely used in continuum mechanics [218]
and it represents the local volume variation.

• Divergence [150]: This DF operator represent the volume density of the
outward flux of a vector field from an indefinitely small volume around a given
point.
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Baseline Follow-up Subtraction Jacobian Divergence NormDivFollow-up+GT

Figure 3.2: Relationship among baseline, follow-up, GT, subtraction image and
the DF operators (Jacobian, Divergence, and NormDiv) of the four modalities. From
top to bottom, each row represents T1-w, T2-w, PD-w, and FLAIR respectively. All
the images are both from the same patient and slice. The GT is overlaid in red in
the third column.

• NormDiv: This operator is the multiplication of the divergence and the norm
of the DF. As successfully tested by Thirion and Calmon [150], this operator
helps in the detection of active lesions.

Figure 3.2 shows a slice example of the baseline, follow-up, and subtraction image,
and the DF operators (Jacobian, Divergence, and NormDiv) with the Ground Truth
(GT) overlaid in red.

3.2.2 Deformation-subtraction based LR model

Our model uses a voxel-wise LR classifier like the work of Sweeney et al. [156] to
predict the lesion probability of each voxel using the baseline and follow-up intens-
ities, subtraction values, and the DF operators for T1-w, T2-w, PD-w, and FLAIR
images. To train the model, we perform a voxel selection step in where candidate
voxels that are likely to be part of a new lesion are selected to decrease the number
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of training samples. As new lesions appear hyperintense in T2-w subtraction im-
ages, we only train the LR model with those candidate voxels. Some regions may
have a high intensity in the subtraction images as a result of noise, inhomogeneity,
registration errors, or small anatomic differences. To avoid that, the T2-w subtrac-
tion images are smoothed with a Gaussian kernel and only voxels with a subtraction
value larger than the mean are included as candidates. As the aim of the study is
to detect new T2-w lesions inside WM, a WM mask is used to limit the region of
interest. This WM mask is computed with an automated atlas-based multi-channel
tissue-segmentation algorithm [24] applied to the baseline and follow-up images be-
fore registration. This algorithm uses an expectation maximization algorithm to
maximize the log-likelihood between the real MRI data and a Gaussian model of
four classes: the pure tissue classes (WM, GM, and CSF) and a partial volume
class (GM/CSF). For pure tissue classes, prior probabilities are provided by an at-
las, while for the partial volume class, a weighted atlas of CSF and GM is used.
Afterwards, lesions are segmented by applying a threshold on the FLAIR image.
For each time point, we combine the WM mask and the lesion mask to obtain both
a baseline and a follow-up mask. Even though new and enlarging lesions may be
misclassified in the follow-up WM mask, these voxels should appear as normal WM
in the baseline image. After registering the baseline WM mask to the follow-up
space, a final WM mask is obtained as the union of the baseline and follow-up WM
masks in the follow-up space. After the voxel selection step, a LR model is fitted
over these candidate voxels.

3.3 Experimental setup

3.3.1 Datasets

VH dataset: The database used in this chapter consists of images from 60
different patients with a CIS or early relapsing MS who underwent brain MRI in
the Vall d’Hebron Hospital’s center for monitoring disease evolution and treatment
response. Each patient underwent brain MRI within the first 3 months after the
onset of symptoms (baseline) and at 12 months’ follow-up after the onset. Thirty-
six of the patients (13 women and 23 men; 35.4 ± 7.1 years of age) confirmed MS
with new T2-w lesions, while 24 patients did not present new T2-w lesions. The
baseline and follow-up scans for all patients were obtained in the same 3T magnet
(Tim Trio; Siemens, Erlangen, Germany) with a 12-channel phased array head coil.
The MRI protocol included the following sequences: 1) transverse proton density
(PD)- and T2-w fast spin-echo (TR = 3080 ms, TE = 21 − 91 ms, voxel size
= 0.78 × 0.78 × 3.0 mm3), 2) transverse fast FLAIR (TR = 9000 ms, TE = 87 ms,
TI = 2500 ms, flip angle = 120◦, voxel size = 0.49×0.49×3.0 mm3), and 3) sagittal
T1- weighted 3D magnetization-prepared rapid acquisition of gradient echo (TR
= 2300 ms, TE = 2.98 ms, TI = 900 ms, voxel size = 1.0 × 1.0 × 1.2 mm3). The
Vall d’Hebron Hospital’s ethics committee approved the study, and written informed
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consent was signed by the participating patients.

Only new T2-w lesions that were visually detected on the follow-up scan were
annotated on the PD-w images and semiautomatically delineated using Jim 5.0 soft-
ware1. First, an expert neuroradiologist detected changes visually by using baseline
and follow-up scans, and then a trained technician delineated them semiautomatic-
ally by using the subtraction image. The raters always annotated the complete new
lesion and only the new part of the lesion in the case of large lesion growth. The
dataset used in our study contained only two growing lesions, and the remaining were
new lesions. Finally, the expert neuroradiologist confirmed the final segmentation.
This analysis was used as the reference standard for comparison. The 36 patients
with new T2-w lesions exhibited a total of 191 lesions. The lesions were distributed
as 15.15% small (3-10 voxels), 53.53% medium (11-50 voxels), and 31.31% large
(more than 50 voxels).

Preprocessing: We followed the main preprocessing steps described in 2.2.1.
For each patient, the same preprocessing steps were performed on both baseline and
follow-up images. First, a brain mask was identified and delineated on the PD-w
image using the ROBEX Tool2 [50]. Second, the four images underwent a bias field
correction step using the N4 algorithm from the ITK library3 with the standard
parameters for a maximum of 400 iterations [219]. The T1-w and FLAIR images
were linearly registered to the PD-w using Nifty Reg tools4 [220, 221]. Finally, the
baseline and the follow-up intensity values were normalized per modality and per
patient (i.e., between the baseline and the follow-up scans, and not across the entire
dataset) using a histogram matching approach based on Nyúl et al. [61] 5.

3.3.2 Evaluation

We evaluated the proposed framework in two scenarios. Firstly, we analyzed the
accuracy of the detection using a leave-one-out cross-validation strategy with the
36 patients with new MS lesions. This strategy was applied per patient on our 36
images from the MS patient dataset. From all these images, the candidate voxels
were around four million, including only 13 thousand voxels per lesions while the
rest were negative samples. The classifier was trained using 35 patients and tested
with the remaining one. This process was repeated until all patient images were
used as a test image. Secondly, we analyzed the specificity of the method with the
24 patients with no new T2-w lesions. To do this, we performed a new training
using all the 36 images with new MS lesions. We compared also the obtained results
with those of recent state-of-the-art approaches [32, 33, 156].

Standard measures such as the true positive fraction (TPF), the false positive

1http://www.xinapse.com/home.php
2https://www.nitrc.org/projects/robex
3https://itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImageFilter.html
4https://sourceforge.net/projects/niftyreg/
5https://itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html
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fraction (FPF), and the Dice similarity coefficient (DSC), which were computed as
follows, were used for the evaluation:

TPF =
TP

TP + FN

FPF =
FP

FP + TP

DSC =
2 × TP

2 × TP + FP + FN

where TP, FN, and FP are the number of true positives, false negatives, and false
positives, respectively. In terms of detection, a lesion was considered as a TP if there
was at least one voxel overlapping. In terms of segmentation, only the voxel-wise
DSC was computed.

To depict the impact of both the deformation field operators and the baseline
intensities features in the detection and segmentation of new T2-w lesions, we ana-
lyzed the following models:

• LR-DF (Logistic Regression with DF): This is our main model which uses the
four image intensities (T1-w, T2-w, PD-w, and FLAIR) in both baseline and
follow-up, the subtraction values, and the DF operators (Jacobian, Divergence,
and NormDiv) per voxel.

• LR-NDF (Logistic Regression without DF): This model incorporates the four
image intensities (T1-w, T2-w, PD-w, and FLAIR) in both baseline and follow-
up and the subtraction values per voxel but DF are not used. This model is
used for comparison with LR-DF to highlight the impact of the DF operators.

• LR-DFNB (Logistic Regression with DF without Baseline): This model uses
the four image intensities (T1-w, T2-w, PD-w, and FLAIR) in only the follow-
up images, the subtraction values, and the DF operators (Jacobian, Diver-
gence, and NormDiv) per voxel. This model is used for comparison with
LR-DF to highlight the impact of the baseline intensities.

• LR-NDFNB (Logistic Regression without DF without Baseline): This model
uses the four image intensities (T1-w, T2-w, PD-w, and FLAIR) in only follow-
up images and the subtraction values per voxel. This model is used for com-
parison with LR-NDF to highlight the impact of the baseline intensities in
the absence of DF operators. This model corresponds to our implementation
of the approach proposed by Sweeney et al. [156].

Moreover, similarly to the works of Ganiler et al. [32] and Cabezas et al. [33],
we studied the performance of the model according to the different lesion sizes. We
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analyzed the same categories, where lesions of [3 − 10] voxels were considered small,
lesions of [11 − 50] voxels were considered medium, and lesions of +50 voxels were
considered large. This division is useful to analyze the effect of the deformation
fields on different lesion sizes.

3.3.3 Postprocessing

After training the model, we create 3D maps of the estimated lesion probability at
each voxel. As done by Sweeney et al. [156], we smooth these maps with Gaussian
kernels mainly to decrease noise and to remove some small FP lesions. The smoothed
probabilistic maps are thresholded to get the final binary lesion segmentation. The
threshold is empirically selected as the best trade-off between sensitivity (i.e. TPF )
and specificity (i.e. 1 − FPF ). Specifically, the best threshold is obtained by
the higher F-score value of both measures, which gives the harmonic mean of the
measures and is computed as:

F-score = 2
TPF ∗ (1 − FPF )
TPF + (1 − FPF )

A more detailed description is provided in the results section, showing how this
selection is done and the effect of using different probability thresholds. Moreover,
all lesions with size lower than 3 voxels are removed from the generated masks.

3.3.4 Statistical analysis

The statistical significance of the performance between proposed methods was com-
puted by running a series of permutation tests between the DSCs (Segmentation)
and DSCd (Detection) obtained by each method [39, 222]. Permutation tests select
random subsets of independent subjects of the dataset, and for each pair of meth-
ods, perform all possible permutations of their values in the corresponding subset,
counting the number of times that the differences of one method are significant with
respect to the other with (p ≤ 0.05). After repeating this process over a number of
iterations S, the mean and standard deviation (µ0, σ0) of the fraction of times when
each method produced significant p-values is calculated over all the iterations. With
this approach, methods with higher means indicate a higher significance of their re-
ported values. The methods were then ranked into three different levels according to
the difference between the mean score of the best method µ0 ± σ0 and the distance
with respect to the mean scores of the rest of the methods. Hence, Rank 1 contained
methods with mean scores of (µ0 − σ0, µ0], Rank 2 contained those with mean scores
of (µ0 − 2σ0, µ0 − σ0] and Rank 3 those in the interval (µ0 − 3σ0, µ0 − 2σ0]. For
all the tests, we set the number of comparisons between each pair of methods to
S = 1000.
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Table 3.1: Lesion detection results: Comparison between the different models eval-
uated. Results stand for mean detection TPF , FPF , DSCd and mean segmentation
DSCs.
Method TPF FPF DSCd DSCs

LR-NDFNB 48.69 16.78 0.54 0.38
LR-NDF 48.46 13.90 0.54 0.39
LR-DFNB 69.88 11.94 0.74 0.52
LR-DF 74.30 11.86 0.77 0.56
Ganiler et al. [32] 51.62 35.87 0.46 0.37
Cabezas et al. [33] 70.93 17.80 0.68 0.52

Additionally, the Pearson’s correlation coefficient was also used to analyze the
linear relationship between manual annotations and the automatic detections ob-
tained with our approach.

3.4 Results

Table 3.1 summarizes the new T2-w lesion detection and segmentation mean results
for our full model (LR-DF), and the three variants with less features (LR-DFNB,
LR-NDF, LR-NDFNB). We also included two state-of-the-art approaches for com-
parison [32, 33] when analyzing the 36 MS patients. Notice that our full model
outperformed all the other approaches and had the best values for all the evalu-
ation measures. The lower value of DSCs is because many lesions have a small
size which has a high effect on the DSCs. Figures 3.3(a) and 3.3(b) visually show
the result of the permutation tests for the segmentation and the detection DSC val-
ues, respectively. Permutation tests permit to compute the exact P-value, and are
not limited by any statistical distribution or minimum number of subjects. Essen-
tially, each method is compared against all others using randomly selected subsets
of data using statistical difference-of-mean test that do not require data to follow
the normality condition. Notice that the data variability is still present in the fact
that mean values obtained by all methods are not too high (best methods obtain
µDetection = 0.50 and µSegmentation = 0.67). It is, however, possible to see how some
methods do better than the other in pairwise comparisons that bear statistical sig-
nificance. Notice that the methods in rank 1 included only approaches that used
DF-based features, whereas non-DF based approaches were placed in ranks 2 and
3. Because ranking between the approaches differed, we can conclude that there is
a significant difference in performance when including DFs.

Analyzing the results per patient, we had 12 patients with a TPF of 100% and
FPF of 0%, and 5 patients with a TPF of 100% and less than a 33.33% of FPF. The
worst cases we had were 3 patients with a TPF lower than 30%. Those patients had
mainly small lesions ([3 − 10] voxels) that the pipeline failed to detect.
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(a)

(b)

Figure 3.3: Permutation test results for the evaluated methods. Final ranks based
on (a) the DSC (Segmentation) and (b) the DSC (Detection).
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Table 3.2: Analysis of TPF for different classifiers for different lesion sizes. Lesions
between 3 and 10 voxels are considered small; lesions between 11 and 50 voxels,
medium; and lesions with 50 voxels, large
Method 3 - 10 11 - 50 +50
LR-NDFNB 11.76 40.84 77.80
LR-NDF 11.76 40.83 77.80
LR-DFNB 28.13 61.52 91.24
LR-DF 34.40 65.70 91.30
Cabezas et al. [33] 42.86 48.57 77.42

Figure 3.4 shows the correlation between the number of new lesions manually
annotated and the automatically detected and also the correlation between lesion
volume in the GT and the automatically segmented. Significant Pearson’s correl-
ation (R = 0.85; Pvalue < 0.00001; confidence band = 95%) and (R = 0.87;
Pvalue < 0.00001; confidence band = 95%) were found, respectively, between an-
notations based on visual detection (GT) and our approach (only LR-DF). Regard-
ing the number of the data points used, all the MS patients with lesion progression
were used for this correlation (36 data points - 36 patients), but different patients
had the same number of GT and automatically detected lesions. Therefore, several
points are overlapping in the plot. For example, there are 5, 6, and 4 cases with (2
GT lesions, 2 detected lesions), (1 GT lesion, 1 detected lesion), and (3 GT lesions,
2 detected lesions), respectively. Notice that there are numerous cases in which the
number of new lesions per patient is actually very small.

Table 3.2 summarizes the performance of our pipeline according to the different
lesion sizes described in Section 3.3.2. The LR-DF model had a better performance
than LR-NDFNB and LR-NDF in all lesion size categories, although the results with
small lesions had a worse performance when compared with larger lesions. Moreover,
LR-DF had also a better performance than Cabezas et al. [33] for medium and large
lesion size categories.

The selection of the Gaussian smoothing σ and the threshold value in the postpro-
cessing step was done by maximizing the F-score of TPF and FPF using a leave-one-
out cross validation, obtaining the results shown in Figure 3.5. The leave-one-out
cross validation was applied per patient on our 36 patients with MS dataset. Notice
that increasing σ requires decreasing the threshold value to obtain better results.
The highest F-score value was obtained with σ = 0.75 and threshold = 0.3. Table
3.3 shows how TPF, FPF, DSC (Detection), DSC (Segmentation), and F-score were
varying based on changing the threshold on the probability maps smoothed with
σ = 0.75. A higher TPF could be obtained by decreasing the threshold but obtain-
ing a higher FPF. The threshold 0.3 was selected as the best trade-off between TPF
and FPF, computed using the F-score value (Figure 3.5). Notice that this threshold-
ing analysis should be also done when using different datasets acquired with different
MRI scanners and image protocols to optimize the obtained results. In order to eval-
uate the effect of postprocessing, we tested also our approach without using it, so
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Figure 3.4: Correlation between (a) the number of GT lesions and the number of
automatically detected ones using the proposed LR-DF model (Pearson’s coefficient
R = 0.85, Pvalue < 3.25e−10) and (b) the volume (the number of voxels) of GT lesions
and the volume of automatically detected ones using the proposed LR-DF model
(Pearson’s coefficient R = 0.87, Pvalue < 1.55e−11). All the MS patients with lesion
progression were used for this correlation (36 data points - 36 patients). Notice that
different patients have the same combination of number of GT lesions and LR-DF
detections. Therefore, several points are overlapping in the plot.
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Table 3.3: The effect of varying probability thresholds after smoothing with σ =
0.75: Results stand for mean detection TPF , FPF , DSCd, mean segmentation
DSCs, and F-Score. Best values based on F-Score are depicted in bold.
Threshold TPF FPF DSCd DSCs F-score
0.0 99.26 99.01 0.05 0.007 0.02
0.1 86.84 43.40 0.64 0.49 0.685
0.2 82.53 22.52 0.77 0.57 0.799
0.3 74.30 11.86 0.77 0.56 0.806
0.4 57.83 6.32 0.65 0.43 0.715
0.5 46.16 6.15 0.54 0.30 0.619
0.6 31.80 6.17 0.40 0.18 0.475
0.7 17.53 3.40 0.24 0.10 0.296
0.8 9.14 0.0 0.12 0.05 0.168
0.9 7.78 0.0 0.09 0.02 0.144
1.0 0.0 0.0 0.0 0.0 0.0

no smoothing was applied and the class with the highest probability was selected
(argmax). The results showed better TPF values but with more FPF, especially in
those cases with smaller lesions.

Finally, we evaluate the 24 patients with no new T2-w lesions, after training the
LR-DF model with all the 36 patients with new T2-w lesions. This allows to clearly
state the specificity of our pipeline. Only 5 FP detections where found (in 4 cases)
with a total size of 40 voxels.

Figure 3.6 shows a visual example of the performance of our pipeline, where each
column corresponds to the baseline T2-w image, follow-up T2-w image, the GT, and
the results obtained by LR-DF, LR-NDF, and LR-NDFNB approaches, respectively.

3.5 Discussion

The pipeline proposed in this chapter is fully automated, simple and adjustable to
the application in terms of sensitivity and specificity. In order to improve the clas-
sifier accuracy, we added DF operators to the approach of Sweeney et al. [156]. As
suggested by Cabezas et al. [33], the DF helps to reduce the detection errors due to
local inhomogeneities and small changes that affect the accuracy of the subtraction
pipelines.

As lesions are clusters of voxels and our approach is a voxel-wise pipeline, spatial
information between voxels should also be included in our model. Although the
model was not trained with standard spatial features or textures, the neighboring
information between voxels was incorporated while smoothing the generated prob-
ability maps during the postprocessing step. Moreover, a registration technique that
implements a free-form deformation also incorporates this local information into the
resulting DF and provides better insight into changes occurring due to development
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Figure 3.5: Parameter selection. The F-score values of TPF and FPF using leave-
one-out cross validation. The maximum F-score was obtained with σ = 0.75 and
threshold = 0.3.

of new or enlarging lesions. And, since they are computed using the gradient image
of the DF, the DF operators encode spatial relationships too.

In the postprocessing step, we selected the parameters (Gaussian smoothing σ

and threshold value) using the maximum F-score value but the pipeline can also be
used without any parameters tuning by not smoothing the probability maps and
selecting the class with the highest probability (using argmax). In that case, the
pipeline had an increase in TPF (80.0%) and also FPF (21.87%) with the same
DSC in segmentation and detection compared with our best configuration using
postprocessing, mostly due to FPs eliminated by the Gaussian smoothing step in
the latter. Because the voxel probabilities are decreased after smoothing, an increase
in the smoothing σ value requires a decrease in the threshold value. There is a trade-
off between the number of false positives and true positives. The smoothing also
eliminates small regions that may be FPs or TPs. For instance, this step had a
high impact in reducing the number of false positives in the 24 patients with no new
T2-w lesions.

Our results show that the combination of DFs and supervised classification may
help to increase the performance when detecting new T2-w lesions. In order to
analyze the effect of DFs, we trained a logistic regression classifier with different
features. We trained the model with different combinations of the baseline and
follow-up intensities, the subtraction values and DF operators. Using only features
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Figure 3.6: Examples of new MS lesions detection in a 12-month longitudinal
analysis. Images (a) and (b) show one axial slice of T2-w image at baseline and
follow-up, respectively. Image (c) shows the new MS lesions annotations performed
by an expert (GT). Images (d), (e) and (f) show the segmentation of LR-DF, LR-
NDF, and LR-NDFNB approaches, respectively. Notice that for this axial slice the
LR-DF model could detect 7 lesions out of the 9 lesions in the GT. The two missed
ones were actually detected in the adjacent slice.
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from intensities within a lesion (baseline + follow-up) or subtraction could trigger
the detection of new lesions. As mentioned in Table 3.1, the models which do
not include DF features (LR-NDFNB and LR-NDF) could detect new lesions with
TPF of 48.69% and 48.46% and FPF of 16.78% and 13.90% respectively. As in
previous works [33], our results show that the addition of DFs helps to significantly
increase the detection of new T2-w lesions while maintaining the number of false
positives low. However, our model is capable of improving the results of other
unsupervised methods due to the use of a supervised classification model instead of
an unsupervised rule-base approach [32, 33]. Furthermore, these improved results
are further backed by a strong correlation between the number of automatically
detected lesions and the number of visually detected ones. This suggests that our
automatic segmentation may help the radiologist to estimate the number of new
lesions before annotation.

Given the difficulty to obtain MRI datasets with expert annotations, our evalu-
ation dataset was composed of a single database of 60 MS patient images obtained
with the same scanner and protocol. This limits the analysis of our model within
a single image domain i.e. the model with the parameter configuration presented
in this study evaluated with the image domain of our data set. Further tests and
probably a specific parameter adjustment should be performed for optimizing the
performance on different data sets acquired with different MRI scanner machines
and different image protocols. Moreover, although the available data comprised MS
patients with different lesion sizes, the volume of most of the new/enlarging T2-w
lesions was relatively low. This can bias the results obtained by our approach, since
we noticed that for small lesions, the pipeline had lower accuracy than for larger le-
sions. As the lesion size increases, the DFs are able to better represent these volume
changes. In this regard, one could study the use of different strategies for each lesion
size and combine the different outputs (i.e. probability maps) to improve the overall
obtained results.

Our pipeline was only tested with the kind of images mentioned in the data
section but this does not mean that the approach is limited to them. Further testing
with images with different resolution (2D and 3D) and from different scanners and
image protocols should be performed. Previous subtraction works such as Ganiler
et al. [32] tested their subtraction pipeline with other scanners, image resolutions
2D for instance, and 1.5T and 3T and worked well. Although, one should tune
properly the threshold in the postprocessing section for the best performance or use
the pipeline without the postprocessing step (argmax).

The proposed approach in this chapter is a conventional machine-learning tech-
nique i.e, a feature extraction step is needed to extract important features from input
images before the training process. The feature extractor should be designed and
engineered carefully. For instance, our proposed method is based on the DF-based
features (Jacobian, Divergence, and NormDiv) and the features from the subtraction
between the baseline and the follow-up images. As discussed in 2.3.3, deep learning
methods simplify the feature extraction process, and could gather unknown patterns
to help in the desired task. For instance, as seen in section 2.3.4, CNN-based meth-
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ods can be used to perform the segmentation of lesions. In CNNs, there is no need
to compute features as a first step since the network effectively finds the important
features as a part of its search process and eliminate the bias of testing only those
features that we believe to be important. Moreover, the task of computing many
features and then selecting those that seem to be the most important. In the next
chapter, we will propose a FCNN-based approach for new T2-w MS lesion detection.





CHAPTER 4

A DEEP LEARNING MODEL FOR

NEW T2-W LESION DETECTION IN

MULTIPLE SCLEROSIS

4.1 Overview

Recently, deep neural networks have attracted substantial interest. CNN have
demonstrated groundbreaking performance in brain imaging, especially in tissue
segmentation [97, 223] and brain tumor segmentation [210, 224]. In contrast to
previously supervised learning methods, CNNs do not require manual feature en-
gineering or prior guidance. Furthermore, the increase in computing power makes
them a very interesting alternative for automated lesion segmentation. CNN-based
methods have achieved top ranking performance on all of the international MS lesion
challenges [225, 226, 227, 228].

As described in section 2.2.3, in the deformation-based approaches, the new T2-w
lesion detection is performed by analyzing DF obtained by nonrigid registration
between successive scans [33, 150, 157]. Nonrigid registration and the use of DF
between time points have been shown to improve the detection of new T2-w MS
lesions in longitudinal studies [33, 34]. These DFs can either be obtained using
classic nonrigid registration approaches based on optimization or, recently, using
also learning-based approaches. In real cases, both tissue transformation (changes
in intensity) and tissue deformation generally occur. Hence, the mass effect of the
lesion should also be taken into account in order to define a precise lesion evolution.
Deformation based approaches are sensitive to these changes in the brain. However,
they do not provide information about stable lesions.

Classic registration approaches establish a dense nonlinear correspondence bet-
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ween a pair of 3D brain scans. For these approaches, registration is defined as an
optimization problem that needs to be solved for each volume pair using a simil-
arity metric while enforcing smoothness constraints on the mapping. Solving this
optimization is computationally intensive and therefore, extremely slow in practice
[217, 229, 230, 231, 232, 233, 234]. However, different GPU-based accelerated ap-
proaches have been proposed to improve the efficiency and speed up the optimization
[235, 236, 237].

Common learning-based approaches rely on classification algorithms to register
the two scans. These algorithms involve a first stage in which a model is estim-
ated on training data composed of a set of features and their corresponding ground
truth and a second stage in which the model is tested on a new dataset to provide
the desired results. Classic machine learning methods require hand-crafting fea-
ture vectors to extract appearance information [238]. In contrast, CNNs can learn
a set of features that are specifically optimized for the current task directly from
the image data. Currently, CNNs have demonstrated superior performance in brain
imaging specifically for segmenting tissues [97, 239], brain tumors [210, 240, 241]
and white matter lesions [39, 242]. In the case of registration approaches, learning-
based methods learn a parametrized registration function from a collection of images
during training. During testing, a registration field can be quickly computed by dir-
ectly evaluating the function using the learned parameters. Some proposed methods
[243, 244] rely on a precomputed DF as the ground truth, and the others rely only on
the images being registered or segmentation masks, without comparing the expec-
ted deformation field with a precomputed deformation field [245, 246]. Specifically,
Balakrishnan et al. [247] developed a new CNN approach that computes the de-
formation between two images by training the network using a similarity metric and
a regularization term similar to classic registration methods, obtaining comparable
results with current state-of-the-art approaches.

In this chapter, we propose an FCNN approach to detect new T2-w lesions in
longitudinal brain MR images. The proposed model combines intensity-based and
deformation-based features within an end-to-end deep learning approach.

4.2 Methods

4.2.1 Network architecture

Figure 4.1 shows the new T2-w MS lesion segmentation architecture. The proposed
network is an FCNN that takes four image modalities (T1-w, T2-w, PD-w, and
FLAIR) in both baseline and follow-up as inputs and outputs the new T2-w lesion
segmentation mask. The network consists of two parts. The first part is U-Net
blocks that learn the DFs and nonlinearly register the baseline image to the follow-
up image for each input modality. The learned DFs and the baseline and follow-up
image modalities are then fed to the second part of the network, another U-Net that
performs the final detection and segments the new T2-w lesions. The network is
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trained end-to-end with gradient descent and simultaneously learns both DF and
new T2-w lesion segments.

3D registration architecture: A 3D registration block is built for each input
modality following the architecture shown in Figure 4.2(a). This block is inspired by
the work of Balakrishnan et al. [247] (VoxelMorph), which is a learning framework
for deformable medical image registration. The registration block learns the DF and
nonlinearly registers the baseline image to the follow-up image. It is a fully convo-
lutional network that follows a U-shaped architecture [191]. The U-Net architecture
consists of four downsample (the contracting path) and upsample steps (the expans-
ive path). The core element (CE) block is a two 3D convolution layer (kernel size =
3 and stride = 1) with K channels. Each convolution is followed by a LeakyReLU
layer. The number of channels, K, of CE blocks are (64, 128, 256, and 512) and
(512, 256, 128, and 64) for the contracting path and expansive path, respectively.
The U-Net’s downsampling followed by the upsampling and skip connections allow
the network to exploit information at large spatial scales while retaining useful local
information. Moreover, as discussed in Drozdzal et al. [248], skip connections facil-
itate gradient flow during training. The spatial transformation [247, 249] warps the
baseline image to the follow-up space using the learned DF and enabling end-to-end
training. The LeakyReLU activations are used instead of ReLU so that the learned
DFs can have positive/negative values.

3D segmentation architecture: A 3D segmentation block is also used for
segmenting the new T2-w lesions. It is a two-branch network where each branch is
a U-Net following the architecture shown in Figure 4.2(b). The U-Net architecture
is exactly the same as the U-Net used in the registration block but using a ReLU
activation layer instead of the LeakyReLU layer. The inputs of the first branch
are the four image modalities (T1-w, T2-w, PD-w, and FLAIR) in both baseline
and follow-up, while the second branch input is the four DFs learned from the first
registration blocks. The outputs of the two branches are concatenated before the
classification step. One UNetCore process the DFs (deformation-based) and another
UnetCore process the baseline/follow-up modalities (intensity-based). Note that the
model is merging the intensity with the DFs to segment the new lesions.

4.2.2 Loss functions

The loss function used in this work is the summation of two loss functions. One func-
tion is an unsupervised loss function that controls the registration part of the network
[247]. It consists of two components: a similarity part that penalizes differences in
appearance between the moved baseline and follow-up images and a regularization
part that enforces a spatially smooth deformation and is often modeled as a linear
operator on the spatial gradients of DF as stated in [247]. Therefore, the registra-
tion block is trained in an unsupervised manner using the spatial transform block
which is used to warp the baseline image to the follow-up space using the learned
DF. The block learns the DF by minimizing the mean square error (MSE) between
the warped baseline and the follow-up images during training. The other function
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Figure 4.1: Scheme of the new T2-w MS lesion segmentation network. The pro-
posed network consists of four 3D registration blocks and one 3D segmentation block.
The inputs are baseline/follow-up images of the T1-w, T2-w, PD-w, and FLAIR.
For each input modality, there is a 3D registration block that learns the deforma-
tion field (DF) and nonlinearly registers the baseline image to the follow-up image.
Afterwards, the learned DFs and the baseline and follow-up images are fed to the
segmentation block that performs the final detection and segmentation of the new
T2-w lesions. The network is trained end-to-end using a combined loss function.
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(a) 3D registration network

(b) 3D segmentation network

Figure 4.2: The 3D registration and segmentation architectures. Each input mod-
ality has its 3D registration block (a) that learns the deformation field (DF) and
nonlinearly registers the baseline image to the follow-up image. The registration
block is a U-Net architecture with four downsample and upsample steps. The spa-
tial transform block is used to warp the baseline image to the follow-up space using
the learned DF enabling end-to-end training. The four learned DFs and the baseline
and follow-up images are then fed to the segmentation block (b), another U-Net that
performs the final detection and segmentation of the new T2-w lesions.



Chapter 4. A deep learning model for new lesion detection 66

is a supervised loss function LCrossEntropy (CrossEntropy) that controls the segment-
ation part of the network and penalizes differences between the segmentation and
GT. The loss function LT otal is as follows:

LT otal = LCrossEntropy(Seg, GT )
︸                            ︷︷                            ︸

Segmentation loss function

+

∑

m∈Modalities





Similarity part
︷                                 ︸︸                                 ︷

1
N

N∑

i=1

(Fmi
− Bm(DFm)i)2 +

Regularization part
︷                           ︸︸                           ︷

λ
∑

p∈DF

‖ ▽DFm(p) ‖2





︸                                                                                                ︷︷                                                                                                ︸

Registration loss function

(4.1)

where Fm, Bm(DFm), and DFm are follow-up image, baseline image warped by DF
(moved baseline), and DF for a modality m, respectively. Seg and GT are the
automatic segmentation and the ground truth, respectively. N is the number of
voxels in a patch and λ is a regularization parameter.

4.3 Experimental setup

4.3.1 Datasets

Data and preprocessing: The database used in this chapter is the same in-house
dataset (VH dataset) used in the evaluation of the method proposed in chapter
3. The database consists of images from 60 different patients with a CIS or early
relapsing MS who underwent brain MRI in the Vall d’Hebron Hospital’s center for
monitoring disease evolution and treatment response. Thirty-six of the patients (13
women and 23 men; 35.4 ± 7.1 years of age) confirmed MS with new T2-w lesions,
while 24 patients did not present new T2-w lesions. The dataset was preprocessed
the same way as described before. To warp the baseline images to the follow-up
space, the baseline PD-w image was linearly registered to the follow-up PD-w image
using using Nifty Reg tools1 [220, 221]. To avoid interpolation more than one,
baseline T1-w and FLAIR were warped using the combined affine transformation.
See section 3.3.1 for more details.

4.3.2 Training and implementation details

For training the network, 3D 32x32x32 patches with a step size of 16x16x16 were
extracted from the baseline and follow-up images of the four input modalities. Zero
padding was applied to all the input volumes. This configuration was chosen empir-
ically to give the highest performance of the proposed model. When trying smaller
and bigger patch sizes, the performance was not significantly better. Moreover, in-
creasing the patch size was more computationally and memory expensive. Note also

1https://sourceforge.net/projects/niftyreg/



67 4.3. Experimental setup

that we aimed to learn the registration part from all image locations and not only for
those containing new lesions. Therefore, the whole model was trained end-to-end,
including the registration and the segmentation part, using a uniform sampling of
patches to cover all the image. The extracted patches were divided into training
and validation sets (70% for training and 30% for validation). The training set was
used to adjust the weights of the neural network, while the validation set was used
to measure how well the trained model performed after each epoch. The model
was trained using Adam [250] with default parameters and regularization parameter
λ = 0.01 [247]. The extracted patches were passed to the network for training in
minibatches of size 4, and the network was set to train for 30 epochs. To prevent
overfitting, the training process was automatically terminated when the validation
accuracy did not increase after 5 epochs.

The proposed method was implemented in Python2, using Keras with the Tensor-
Flow backend [251]. All experiments were run on a GNU/Linux machine running
Ubuntu 18.04 with 128 GB RAM. The training was carried out on a single TITAN-X
GPU (NVIDIA Corp, United States) with 12 GB RAM memory.

4.3.3 Evaluation

We evaluated the proposed framework in different scenarios. First, we analyzed
the accuracy of the detection using a leave-one-out cross-validation strategy with
the 36 patients with new MS lesions. We chose the leave-one-out cross-validation
strategy to be able to perform a quantitative comparison with the results published
in [34]. In this evaluation strategy, the proposed network was trained using 35
patients and tested with the remaining patient. This process was repeated until all
patient images were used as test images. Moreover, to demonstrate the contribution
of simultaneously learning both the DF and the segmentation of new T2-w lesions,
the following models were analyzed:

• SimLearnedDFs: This is our main model in which the four registration
blocks and the segmentation block were trained simultaneously end-to-end
using the loss function explained in section 4.2.2. The four image modalities
(T1-w, T2-w, PD-w, and FLAIR) in both baseline and follow-up combined
with the learned DFs were fed to the segmentation block as first and second
inputs, respectively.

• SepLearnedDFs: In this model, the registration blocks and the segmentation
blocks were trained separately. The four registration blocks were trained first
to obtain the DFs. Then, the four image modalities (T1-w, T2-w, PD-w, and
FLAIR) in both baseline and follow-up combined with the learned DFs were
fed to the segmentation block as first and second inputs, respectively. This
model was used for comparison with the SimLearnedDFs model to highlight

2https://www.python.org
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the impact of the end-to-end simultaneous training of the DFs and new T2-w
lesions.

• DemonsDFs (The proposed network using the DFs obtained from Demons
[217]): This model did not use the registration blocks of the proposed network
shown in Figure 4.1. It used only the segmentation block with four image
modalities (T1-w, T2-w, PD-w, and FLAIR) in both baseline and follow-up
as the first input. The second input of the segmentation block was the DFs
directly computed by the registering baseline to the follow-up image for every
input modality using a multiresolution Demons registration approach from
ITK [217]. This model was used for comparison with the SimLearnedDFs
model to highlight the impact of learned-based DFs with the end-to-end train-
ing over the DFs from Demons.

• NDFs (The proposed network without DFs): This model did not use the
registration blocks of the proposed network shown in Figure 4.1. It used only
the segmentation block with only the four image modalities (T1-w, T2-w,
PD-w, and FLAIR) in both the baseline and follow-up as input. This model
was used for comparison with the other three models to highlight the impact
of the addition of the DFs in increasing the detection of new T2-w lesions.

Second, we analyzed the specificity of the method with 24 patients with no new
T2-w lesions. Testing the performance on these cases allowed to further study how
robust was the proposed method to avoid detecting false positives in patients with
inactive disease. To do this, we performed a new training using all the 36 images
with new MS lesions. Furthermore, we compared the obtained results with those
of recent state-of-the-art approaches [33, 34, 149, 156] 3 applied to the same data-
set used in this work (VH dataset). For the work of Schmidt et al. [149], we used
their implementation of the longitudinal pipeline4. The lesion growth algorithm [85]
was used to obtain the initial cross-sectional WML segmentation per time point.
The parameter κ was empirically optimized for the current dataset, selecting the
value κ = 0.15. The statistical significance of the performance between proposed
model (SimLearnedDFs) and the state-of-the-art approaches [33, 34, 149, 156] was
computed by running a series of permutation tests between the DSC (Segmenta-
tion) and DSC (Detection) obtained by each method as explained in section 3.3.4.
Additionally, the Pearson’s correlation coefficient was also used to analyze the lin-
ear relationship between manual annotations and the automatic detections obtained
with the proposed model (SimLearnedDFs) in terms of number of new lesions and
new lesion volume.

Similarly to the evaluation of the LR-based model proposed in the chapter 3,
we studied the performance of the model according to the different lesion sizes.
We analyzed the same categories, where lesions of [3 − 10] voxels were considered
small, lesions of [11 − 50] voxels were considered medium, and lesions of +50 voxels

3Note that Salem et al. [34] is our LR-based model proposed in chapter 3.
4https://www.statistical-modeling.de/lst.html
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were considered large. This division was useful to analyze the effect of the perform-
ance of the proposed model (SimLearnedDFs), the three variants (SepLearnedDFs,
DemonsDFs, NDFs), and the state-of-the-art approaches [33, 34, 149, 156] on differ-
ent lesion sizes.

Moreover, we studied the performance of the proposed model (SimLearnedDFs),
the three variants (SepLearnedDFs, DemonsDFs, NDFs), and the state-of-the-art
approaches [33, 34, 149, 156] on different brain regions. To the best of our knowledge,
there is no current study that states that the location of the lesion is important for
the longitudinal assessment of MS, although the lesion location (periventricular,
juxtacortical, infratentorial, and deep white matter) is used to prove dissemination
in space according to the McDonald criteria [19]. The motivation to perform this
study was mainly to analyze the behavior performance of all the approaches on
these specific regions. In particular, the analysis of the new MS lesion detection was
divided into 4 types (periventricular, juxtacortical, infratentorial, and deep white
matter) according to its location in the brain. An atlas with three segmented regions
(cortex, ventricles, and (cerebellum and brainstem)) was resampled for each patient
space after nonlinearly registering the atlas template to the T1-w image of each
patient. After the registration, a new MS lesion was considered periventricular,
juxtacortical, or infratentorial if it touched the cortex, ventricles, or cerebellum and
brainstem, respectively. Otherwise, it was considered a deep white matter lesion.

Standard measures such as the true positive fraction (TPF), the false posit-
ive fraction (FPF), and the Dice similarity coefficient (DSC), which was computed
lesion-wise and voxel-wise, were used for the quantitative analysis. In terms of de-
tection, a lesion was considered a true positive if there was at least one overlapping
voxel [32, 33, 34]. In terms of segmentation, only the voxel-wise DSC was computed.
For all the evaluated pipelines, the automatic segmentation masks were obtained by
thresholding the probability maps at 0.5 (using argmax). This thresholding value
was not optimized. Since the outputs of the network were two probability maps
(for the lesions and background), we used the argmax function which chooses the
class with the highest probability. Since we are dealing with a binary problem, the
highest probability is always 0.5 or greater. Therefore, using argmax is equivalent
to using a threshold of 0.5. All automatic lesions with a size lower than three voxels
were removed as done in previous works ([27, 34, 252]). A paired t-test at the 5%
level was used to evaluate the significance of the results of the proposed method.

4.4 Results

Table 4.1 summarizes the new T2-w lesion detection and segmentation mean results
for our proposed model (SimLearnedDFs) and the three variants (SepLearnedDFs,
DemonsDFs, NDFs). We also included four state-of-the-art approaches for compar-
ison [33, 34, 149, 156] when analyzing the 36 MS patients. Notice that our Sim-
LearnedDFs model outperformed the three variants (SepLearnedDFs, DemonsDFs,
NDFs) models and had the best values for all the evaluation measures. Addition-
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ally, it outperformed all the state-of-the-art approaches in terms of all the evaluation
measures (except DSCs, it has the same as Salem et al. [34]). Regarding the mean
runtime per patient, the SimLearnedDFs model could process a testing case in less
than 9 minutes while the other state-of-the-art methods [33, 34], that are based on
DF obtained using classic nonrigid registration approach, took on average 18.36 and
18.55 minutes, respectively. Figures 4.3(a) and 4.3(b) visually show the result of the
permutation tests for the segmentation and the detection DSC values, respectively.
As mentioned in chapter 3, permutation tests permit to compute the exact P-value,
and are not limited by any statistical distribution or minimum number of subjects.
Essentially, each method is compared against all others using randomly selected
subsets of data using statistical difference-of-mean test that do not require data to
follow the normality condition. Notice that the data variability is still present in
the fact that mean values obtained by all methods are not too high (best methods
obtain µDetection = 0.60 and µSegmentation = 0.40). It is, however, possible to see
how some methods do better than the other in pairwise comparisons that bear stat-
istical significance. Regarding segmentation, the methods in rank 1 included only
approaches that used DF-based features, whereas non-DF based approaches were
placed in rank 2. Regarding detection, only the SimLearnedDFs and Salem et al.
[34] models were in rank 1. Because ranking between the approaches differed, we
can conclude that there is a significant difference in performance when including
DFs in a supervised way.

Figure 4.4 shows a visual example of the performance of our SimLearnedDFs
model, where each column corresponds to the baseline T2-w image, follow-up T2-w
image, GT annotated lesions, and the segmentation of SimLearnedDFs, NDFs,
DemonsDFs, and SepLearnedDFs approaches. Figure 4.5 shows the relationship
between baseline, follow-up, the learned DF, GT, and the segmentation of the Sim-
LearnedDFs model in the four input modalities.

Regarding false negatives, the SimLearnedDFs model missed about 17% of the
total number of lesions being distributed as 48% small lesions, 38% medium lesions,
and 14% large lesions. Figure 4.6 shows two examples of false positive detections
using the SimLearnedDFs model. Some of the false positives were due to inflamma-
tion areas that were not marked as new lesions by the experts and the remaining
were mainly due to image artifacts.

Analyzing the results per patient, Figure 4.7 shows a box plot summarizing the
performance of the SimLearnedDFs, the three variants (SepLearnedDFs, DemonsDFs,
NDFs), and the state-of-the-art methods on the four metrics used in the evaluation.
With this analysis done per patient, we observe that the proposed model (Sim-
LearnedDFs) also provided better sensitivity for the cases that present few new le-
sions (i.e. 1, 2 or 3). For instance, for the 8 cases containing only one new lesion, our
approach obtained a (TPF, FPF)=(100%, 0%), while Sweeney et al. [156], Cabezas
et al. [33], Salem et al. [34], and Schmidt et al. [149] models obtained (71.43%, 25%),
(85.71%, 0%), (85.71%,14.29%), and (71.43%, 38.33%), respectively.
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(a)

(b)

Figure 4.3: Permutation test results for the evaluated methods. Final ranks based
on (a) the DSC (Segmentation) and (b) the DSC (Detection).
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Figure 4.4: Examples of new MS lesion detection in a 12-month longitudinal ana-
lysis. (a) and (b) show one axial slice of the T2-w image at baseline and follow-up, re-
spectively. (c) shows the new MS lesions annotations performed by an expert (GT).
(d), (e), (f), and (g) show the segmentation of SimLearnedDFs, NDFs, DemonsDFs,
and SepLearnedDFs approaches, respectively. The GT and the segmentations are
overlaid in green and red, respectively, on the follow-up T2-w image.
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Figure 4.5: Relationship between baseline, follow-up, the learned DFs, GT, and
the segmentation of SimLearnedDFs in the four input modalities. All images are
from the same patient and the same slice. The DFs are displayed in RGB (third
column) and their magnitudes (fourth column) using a hot color map. The GT and
the segmentation of SimLearnedDFs are overlaid in green and red, respectively, on
the follow-up image.
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Figure 4.6: False positive detection example. Some false positives (the first row)
were due to inflammation areas that were not marked as new lesions by the experts
and the others were mainly due to artifacts.

Figure 4.7: Box plot summarizing the performance of the SimLearnedDFs, the
three variants (SepLearnedDFs, DemonsDFs, NDFs), and the state-of-the-art meth-
ods on the four metrics used in the evaluation.
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Table 4.2: Analysis of TPF for different classifiers for different lesion sizes. Lesions
between 3 and 10 voxels are considered small; lesions between 11 and 50 voxels,
medium; and lesions with 50 voxels, large
Method 3 − 10 11 − 50 +50
SimLearnedDFs 39.52 83.32 97.14
SepLearnedDFs 22.62 49.40 83.14
DemonsDFs 30.0 78.25 90.26
NDFs 14.29 47.71 80.48
Sweeney et al. [156] 16.67 52.06 78.25
Cabezas et al. [33] 42.86 48.57 77.42
Salem et al. [34] 34.40 65.70 91.30
Schmidt et al. [149] 13.1 71.92 94.08

Figure 4.8.a shows the correlation between the number of new lesions manu-
ally annotated and the automatically detected (Significant Pearson’s correlation:
R = 0.97; pvalue = 2.7445e−21; confidence band = 95%), while Figure 4.8.b shows
the correlation between lesion volume in the GT and the automatically segmented
(Significant Pearson’s correlation: R = 0.98; pvalue = 5.0233e−24; confidence band =
95%). Regarding the number of the data points used, all the MS patients with lesion
progression were used for this correlation (36 data points - 36 patients). However,
several patients had the same number of GT and automatically detected lesions and
therefore some points are overlapping in the plot. Notice that there are numerous
cases in which the number of new lesions per patient is actually very small.

Table 4.2 summarizes the performance of our pipeline according to the different
lesion sizes described in Section 3.3.2. The SimLearnedDFs model had a better
performance than the other three variants (SepLearnedDFs, DemonsDFs, and NDFs)
in all lesion size categories, although the results with small lesions had a worse
performance when compared with larger lesions. Moreover, SimLearnedDFs had
also a better performance than the state-of-the-art approaches [33, 34, 149, 156] for
medium and large lesion size categories.

Figure 4.9 shows the performance of the new T2-w lesion detection when ana-
lyzed according to its location in the brain. Note that here the TPF and FPF

were computed per lesion type and not per patient. The proposed model (Sim-
LearnedDFs) appeared to learn well from most of the brain regions, and it had the
highest sensitivity everywhere. The dataset had a total of 191 lesions (periventricu-
lar = 25, juxtacortical = 34, infratentorial = 12, and deep white matter = 120).
Moreover, we evaluated the behavior of the SimLearnedDFs model trained with all
36 patients when tested with the set of 24 patients with no new T2-w lesions. The
obtained results showed only 2 cases with one FP detection in each, and these results
were better than those obtained with the other approaches.

To analyze the generalization and the performance of the proposed approach
when tested in images from a different scanner and image acquisition protocol, we
performed a new experiment with data from another collaborating Hospital (Dr.
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Figure 4.8: Correlation between (a) the number of GT lesions and the number of
automatically detected ones using the proposed SimLearnedDFs model (Pearson’s
coefficient R = 0.97; pvalue = 2.7445e−21) and (b) the volume (the number of voxels)
of GT lesions and the volume of automatically detected ones using the proposed
SimLearnedDFs model (Pearson’s coefficient R = 0.98; pvalue = 5.0233e−24). All the
MS patients with lesion progression were used for this correlation (36 data points -
36 patients). Notice that different patients have the same combination of number
of GT lesions and the SimLearnedDFs model detections. Therefore, several points
are overlapping in the plot.
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Josep Trueta Hospital, so we refer to this dataset as Trueta dataset). This dataset
consisted of 17 MS patients, 9 of them with new T2-w lesions and 8 with no new
T2-w lesions. The baseline and follow-up scans for all patients were obtained in a
1.5T magnet Philips scanner. The MRI protocol included the following sequences:
1) transverse proton density (PD)- and T2-weighted fast spin-echo (voxel size =
1.0 × 1.0 × 3.0 mm3), 2) transverse fast FLAIR (voxel size = 1.0 × 1.0 × 3.0 mm3),
and 3) sagittal T1- weighted 3D magnetization-prepared rapid acquisition of gradient
echo (voxel size = 1.0 × 1.0 × 1.0 mm3). The dataset was preprocessed in the same
way as the VH dataset mentioned in section 3.3.1. The experiment consisted in
applying the SimLearnedDFs model and the approach of Salem et al. [34] trained
with the 36 cases from the VH dataset and testing them on the unseen Trueta
dataset. The obtained results for the 9 cases with new lesions showed that the
SimLearnedDFs obtained a TPF of 72.1% and a FPF of 34.97%, while Salem et al.
[34] obtained a TPF of 54.81% and a FPF of 62.34%, respectively. Regarding the
cases with no new lesions, the SimLearnedDFs model did not find any FP, while
Salem et al. [34] obtained at least 1 FP in each case of the 8 cases.

4.5 Discussion

The proposed method is an FCNN for detecting new T2-w lesions in longitudinal
brain MRI. The model is trained end-to-end and simultaneously learns both the
DFs and the new T2-w lesions. As the DFs are learned inside the network and
not computed separately using classic nonrigid registration methods, the execution
time of the network on a testing image is reduced compared to the time of the
state-of-the-art methods [33, 34]. Moreover, the proposed model is fully automated,
simple, and does not require hand-crafting feature vectors to extract appearance
information similar to [34] because CNNs learn a set of features that are specifically
optimized for the task directly from the image data. The inputs to our model are
only the four image modalities (T1-w, T2-w, PD-w, and FLAIR) in both baseline
and follow-up.

To analyze the effect of the end-to-end training, we trained the proposed model
(SimLearnedDFs) and the other three variants (SepLearnedDFs, DemonsDFs, and
NDFs). As mentioned in Table 4.1, the SimLearnedDFs model detected new lesions
with a TPF of 83.09% and an FPF of 9.36%. In terms of TPF, the SimLearnedDFs
model was significantly better than all the other methods except Salem et al. [34]
method (p < 0.05). However, the TPF improved by 3%. In terms of FPF, the
SimLearnedDFs model was not significantly better than the SepLearnedDFs (4.31%
improvement) and the DemonsDFs (2.62% improvement), but it was significantly
better than the other methods (p < 0.05). Note that the model trained without any
DFs (NDFs) detected new lesions with a TPF of 53.99% and an FPF of 17.20%. This
result shows, as previously discussed in [33, 34], that the addition of DFs helps to in-
crease the detection of new T2-w lesions while maintaining a low number of false pos-
itives. However, the results also show that training the model end-to-end, simultan-
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eously learning both the DFs and the new T2-w lesions (SimLearnedDFs), performs
better than learning the DFs separately (SepLearnedDFs) or using DFs computed by
classic deformable registration methods such as Demons [217] (DemonsDFs). The
increase in performance using simultaneously learning compared to the variants
that compute the DF separately could be explained by the use of the combined loss
function during the training process. The simultaneously learning model trained the
two connected networks (registration and segmentation) end-to-end. That means, in
each training epoch, the weights of the registration networks which compute the DFs
were updated during the backpropagation to minimize the summation of the cross
entropy function (segmentation part) and the similarity function (registration part).
These DFs (computed using the updated weights) were then used as inputs together
with the intensity images to the segmentation network in the forward pass to com-
pute the new lesion segmentation. So, the DFs were computed in a guided way that
improved the new lesion segmentation. Note that the other variants did not include
the connection between the registration and segmentation part, so DFs were com-
puted blindly and independently from the segmentation. Moreover, our proposed
model (SimLearnedDFs) improved the results of other unsupervised methods due to
the use of a supervised classification model instead of an unsupervised rule-based
approach [33, 149]. Compared with the state-of-the-art approaches, the proposed
model (SimLearnedDFs) had better results than all the state-of-the-art approaches
in terms of all the evaluation measures. It also operated orders of magnitude faster
than [33, 34] during testing time due to the use of learning-based nonrigid regis-
tration. Regarding the analysis of the results when applied to the 24 patients with
no new lesions, the proposed model (SimLearnedDFs) had high specificity, with no
lesions found in 22 cases (only 2 patients had 1 FP).

Regarding the evaluation according to the lesion location, there was a relevant
increase in the performance in the juxtacortical lesions when both the deformation
fields and brain lesions were learned jointly. The SimLearnedDFs model had a TPF
of 91.18% (31 lesions out of 34) and FPF of 26.19% (11 FPs out of 42 candidates)
with DCSd of 0.82 and DCSs of 0.65. The NDFs model also had a high TPF of
82.35% but with a high FPF of 51.02% (DSCd = 0.64 and DSCs = 0.57). In the pe-
riventricular region, the lesions were easily observed, which may be explained by the
good contrast between ventricular and the new MS lesions. The difference in TPF of
all CNN-based methods was not as high. The proposed method (SimLearnedDFs)
showed the highest sensitivity while still maintaining some false positives (2 FPs out
of 24 candidates, 8.33%) compared to the SepLearnedDFs and DemonsDFsmodels
that had no FPs in the periventricular region. Regarding the deep white matter
lesions, the SimLearnedDFs model detected the highest number of lesions (97 out of
120, 80.83%), which may be explained by the high number of lesions in this partic-
ular region (63% of the total number of lesions). The difference between the three
variants in terms of FPs was very low. In contrast, the sensitivity of CNN methods
was remarkably lower in the infratentorial region due to a lack of training data (in-
fratentorial lesions were only 6% of the total number of lesions). Furthermore, this
may also be one reason for the worse performances of both methods where DF were
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learned. In these methods, the learned deformation fields did not efficiently distin-
guish the complexity of the cerebellum, increasing the number of noninfratentorial
lesion activations. The SimLearnedDFs model had only three FPs detected, and
these FPs were only detected in one patient. All of the subtraction-based methods
like [33, 34, 156] had higher FP lesions in this region, which may be explained by
the poor contrast between tissues in the cerebellum region and therefore, a noisy
subtraction. We believe that more training data or the use of synthetic MS data
like in [30] with more infratentorial lesions, may increase the sensitivity of all CNN-
based methods while reducing FP lesions. Schmidt et al. [149] method had high
TPF in the periventricular, juxtacortical, and deep white matter regions but also
a high FPF. It had (DSCd, DSCs) of (0.68, 0.49), (0.7, 0.51), and (0.54, 0.34) for
the periventricular, juxtacortical, and deep white matter regions, respectively. We
also observed that in the infratentorial region, it had better performance than the
SepLearnedDFs and DemonsDFs models. However, these results should be further
analysed with more cases containing periventricular and infratentorial lesions to
have a more robust analysis.

We also studied the use of conventional data augmentation methods like geo-
metric transformations such as image translation, rotation, or flip. However, the
performance did not increase. One reason might be due to the fact that the gen-
erated samples did not represent image appearances in real data, or the generated
samples were very similar to the existing images in the training dataset. Working on
the development of a framework for generating new longitudinal synthetic MS lesions
on patients or healthy MR images, could allow the creation of more data samples
for particular lesion locations where few samples are available (i.e, the infratentorial
region), helping to improve the trained models.

Regarding the experiment in which the proposed model (SimLearnedDFs) was
applied to images from a different hospital, as expected, the TPF and FPF detec-
tion values were worse due to the change of domain (change in scanner and MRI
protocol). Note however, that the SimLearnedDFs model provided a better gener-
alization than the one not based on deep learning (Salem et al. [34]). Moreover,
the obtained results with the SimLearnedDFs model in the Trueta dataset were
also better than those of the unsupervised approaches (Cabezas et al. [33], Schmidt
et al. [149]), using the parameter configuration optimized for the VH Hospital. The
performance without parameter tuning was actually poor, while the optimum con-
figuration provided similar results than those shown on the VH dataset.

In conclusion, the obtained results indicate that the proposed end-to-end training
model increases the accuracy of the new T2-w lesion detection. The results also
indicate that the DL based model is better than the LR-based model described
in chapter 3. One of the drawbacks of DL techniques is the lack of the training
data. We believe that having more training data would improve the DL techniques
proposed for the MS lesion segmentation and detection in both cross-sectional and
longitudinal analysis. In the next chapter, we propose a deep FCNN model for
MS lesion synthesis and explain how the synthetic MS lesions can be used as data
augmentation for increasing the segmentation and detection accuracy of MS lesions.





CHAPTER 5

MULTIPLE SCLEROSIS LESION

SYNTHESIS ON MAGNETIC

RESONANCE IMAGING

5.1 Overview

As described in chapters 3 and 4, detecting cross-sectional or longitudinal MS le-
sions using supervised machine learning algorithms on MR images requires a large
number of samples to be annotated by expert radiologists. However, obtaining
the annotations of medical images is time consuming. Several attempts have been
made to overcome this issue by using data augmentation. One of the most com-
mon data augmentation method is to modify the dataset of images using geometric
transformations such as image translation, rotation, or flip [185]. However, the gen-
erated samples may not represent image appearances in real data, or the generated
samples may be very similar to the existing images in the training dataset due to
the parameters and image operators used [253]. In contrast, we will propose in this
chapter the generation of synthetic MS lesions on patient or healthy MR images as
the solution to the lack of expert annotations.

The synthesis of MR images has attracted much interest in several areas of
neuroimaging, including how to replace the missing MR modalities with synthetic
data [254], to generate a subject-specific pathology-free image that is not present
in the input modality [255], to improve image segmentation and registration per-
formance [256] and others. The current state of the art in brain MRI synthesis is
the work of Chartsias et al. [257]. The authors proposed an FCNN model for MRI
synthesis, which takes different modalities as inputs and outputs synthetic images
of the brain in one or more new modalities. This approach could be used for the
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synthesis of new lesions. However, there are some limitations that should be con-
sidered, such as the ability to control the intensity and the texture inside the lesions
and the requirement of ground-truth masks for obtaining the lesion model.

In this chapter, we propose a novel FCNN model for MS lesion synthesis. The
model takes as inputs images without MS lesions and outputs synthetic images with
MS lesions. The lesion information is encoded as different binary masks passed
to the model stacked with the input images. To overcome the limitations of the
Chartsias et al. [257] model, we divide the lesions into different regions based on voxel
intensities, encoding this information as different binary masks. These binary masks
are computed directly by thresholding the hyperintensities in the FLAIR image, so
there is no need for the lesions’ ground truth. That means the proposed MS lesion
synthesis model is trained end-to-end without the need of manual expert MS lesion
annotations in the training sets. Therefore, to tackle the lack of available ground-
truth data needed for supervised MS lesion detection and segmentation strategies,
we use the generated synthetic MS lesion images as data augmentation to improve
the lesion detection and segmentation performance. This is done by synthesizing the
lesions in new brain images, coming from either healthy subjects or from patients
with lesions. We evaluate the proposed model on analyzing the improvement the
cross-sectional and longitudinal MS lesion detection and segmentation approaches.

5.2 Methods

5.2.1 Synthetic MS lesion generation pipeline

To learn a model for the generation of synthetic MS lesions, images without lesions
(used as inputs to the model) and the correspondent images with lesions (used as
outputs to the model) are required. This kind of image set is not easy to obtain.
One way to solve this would be using a longitudinal MS dataset; however, MS
lesions in the baseline images and new MS lesions on the follow-up images should be
annotated. Moreover, the baseline and follow-up images should also be registered.
In that way, the model would be trained to generate new lesions in the follow-up
scans. Nevertheless, in this scenario, new lesions on the follow-up images may not
be sufficient to train the model since the volume of most of the new lesions can be
relatively low [34]. Therefore, to overcome the lack of available ground-truth, we
use the MS lesion generation pipeline shown in Figure 5.1 which consists of three
main stages. First, the creation of an approximate white matter hyperintensity
(WMH) mask and several intensity level masks to encode the intensity profile of
the WMH voxels. Second, the filling of this WMH mask in the MR images with
intensities resembling WM. Finally, the generation of MS lesions using the MS lesion
generator network on the filled images. Notice that the proposed MS generator was
trained using only a cross-sectional MS dataset. These filled images were considered
as images without lesions (used as inputs to the model), while the original images
contained MS lesions (used as outputs to the model during the training process).
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The following subsections explain the full pipeline in more detail.

WMH mask and intensity level masks

Creating the WMH mask and the intensity level masks is an important step in the
proposed MS lesion generator pipeline. The aim is that training the model with
intensity level masks instead of MS lesion masks avoids the limitation of having
ground-truth. First, the FLAIR image is thresholded to obtain an approximate
WMH mask [24]. This mask is used to fill the WMH regions with intensities similar
to the ones of the surrounding WM voxels. To learn the model for the generation
of WMH voxels and their intensity profile, the range of intensities starting from the
initial threshold is divided into different small ranges by increasing the intensity
threshold at different steps. These created masks are considered as intensity level
masks, which are then used to encode the intensity profile of the WMH voxels.
The intensity level masks are stacked with the filled MR images when training the
MS generator model. Therefore, the model can be trained with any dataset without
requiring manual expert annotations. The approximate WMH mask is computed by
FLAIR thresholding. The threshold T F

γi
and intensity level mask ILi are computed

as follows:

T F
γ = µF

GM + γσF
GM (5.1)

ILi = T F
γi

< FLAIR ≤ T F
γi+1

(5.2)

where µF
GM and σF

GM are the intensity’s distribution parameters of gray matter (GM)
tissue on the FLAIR image [24]. A small value of γ must be chosen to obtain an
approximate WMH mask so that all the WMH voxels are included in this mask.
Different intensity level masks are obtained by increasing the γ value. The higher
the value of γ, the more brighter WMH voxels are included in the mask.

In this study, the approximate WMH mask was obtained with γ = 0.5. This
value was found empirically to ensure that all the WMH voxels were included in
the WMH mask. Eight intensity level masks with γ = 0.5, 0.8, 1.1, 1.4, 1.7, 2.1,
2.4, and 2.7 were used to encode the WMH intensity profile. This was a trade-
off between the memory required and the minimum number of training samples
inside each intensity level mask while training the model. Note that these masks
are stacked with each input modality so the higher the number of masks, the higher
the memory requirements. Moreover, increasing the number of masks produces a
decrease in the number of training voxels per mask. Figure 5.2 describes the creation
of the eight intensity level masks (IL1, IL2, ..., and IL8). The γ = 0.5 WMH mask is
used to fill the WMHs in the original image, and the intensity level masks are used
to encode the intensity profile in the obtained WMH mask.



Chapter 5. Multiple Sclerosis Lesion Synthesis in MRI 86

F
ig

u
re

5
.1

:
Schem

e
of

the
synthetic

M
S

lesion
generation

pipeline.
γ

=
0
.5

W
M

H
m

ask
and

the
eight

intensity
level

m
asks

w
ere

com
puted

by
F

L
A

IR
thresholding.

T
he

γ
=

0
.5

W
M

H
m

ask
w

as
used

to
fill

all
the

input
m

odalities.
A

fterw
ards,

the
eight

intensity
level

m
asks

w
ere

stacked
to

each
filled

m
odality

to
create

tw
o

2D
inputs

w
ith

9
channels

each
and

these
w

ere
the

inputs
to

the
M

S
lesions

generator.
For

training,
the

original
m

odalities
w

ere
used

as
output.

A
t

testing
tim

e,
if

the
intensity

levelm
asks

w
ere

passed
to

the
generator

netw
ork

w
ithout

m
odification,the

output
im

ages
w

ould
be

the
generated

version
of

the
input

ones
containing

all
the

W
M

H
s

found
in

the
input

im
age.

P
assing

m
odified

intensity
level

m
asks

to
the

generator
netw

ork
w

ill
generate

these
m

odifications
(i.e.,

new
M

S
lesions)

on
the

output
im

ages.



87 5.2. Methods

FLAIR

Thresholding

WMH mask

=0.5

Eight  intensity level masks
IL

1
: 

[0
.5

-0
.8

]

IL
2
: 

[0
.8

-0
1

.1
]

IL
3
: 

[1
.1

-1
.4

]

IL
4
: 

[1
.4

-1
.7

]

IL
5
: 

[1
.7

-2
.1

]

IL
6
: 

[2
.1

-2
.4

]

IL
7
: 

[2
.4

-2
.7

]

IL
8
: 

[2
.7

-∞
]

Figure 5.2: The creation of the WMH mask and the eight intensity level masks
(IL1, IL2, ..., and IL8) using FLAIR thresholding.

WMH filling

After creating the intensity level masks described in the previous section, the γ = 0.5
WMH mask regions are filled in the input modalities. As described in section 2.2.1,
a local filling method is used here to fill the WMH area with the surrounding WM
voxels in all input modalities. First, for each slice in the MR image, the WMHs
are split into individual connected regions. Second, each connected region is dilated
twice. Each connected region is filled using values normally sampled using the
mean and standard deviation of the WM voxels that were laid in the first dilated
area. Furthermore, the filled area with its surrounding voxels (voxels in the filled
connected region and the two dilated areas) is smoothed using a local Gaussian
filter. The second dilation determine the region on which the local Gaussian filter
is used to merge the filled region with the surrounding WM areas.

MS lesion generation model

Figure 5.3 shows our MS lesion generator architecture, which is inspired by the
work of Chartsias et al. [257]. As shown in Figure 5.3(a), the encoders are used
to learn the latent representation for the input modalities, while the decoders are
also used to generate the output modalities. Each decoder is used five times (i.e.,
shared decoder): one to decode each of the four individual latent representations
and one to decode the fused latent representation. The fused latent representation is
computed by combining the T1-w, T2-w, PD-w, and FLAIR latent representations
using a voxel-wise max function (i.e., each voxel of the fused latent representation
has exactly the maximum value of the four latent representations). At testing time,
we used the synthesis result from the fused latent representation as our output.
The model has four 2D input patches with nine channels each (one input patch
for each input modality). The eight intensity level masks computed as explained in
Section 5.2.1 are stacked with each of the filled input modalities. The first channel is
the filled image modality and the other eight channels are the intensity level masks.

Encoder architecture: One independent encoder is built for each input modal-
ity following the architecture shown in Figure 5.3(b). The encoders embed input im-
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ages into a latent space of 32-channel size. This architecture is inspired by the work
of Guerrero et al. [258]. It is a fully convolutional network that follows a U-shaped
architecture [191]. The U-Net’s downsampling followed by the upsampling and skip
connections allow the network to exploit information at large spatial scales, while
not losing useful local information. Moreover, as discussed in Drozdzal et al. [248],
skip connections facilitate gradient flow during training. Our encoders are shallower
than the original U-Net, having three downsample and upsample steps compared to
the original four steps. This reduces the training and run times for the model.

Decoder architecture: One decoder is built for each output modality following
the architecture shown in Figure 5.3(b). The model is a fully convolutional network
to map a multi-channel image-sized latent representation to a single channel image
of the required modality with synthetic MS lesions.

5.2.2 Data augmentation application: Generating new syn-
thetic MS lesions

One of the applications of our synthetic MS lesion pipeline is to generate synthetic
MS lesions on patient or healthy images and use these synthetic images as data
augmentation to increase the MS lesion segmentation and detection performance.
The main idea is to modify the original eight intensity level masks of the target
image before passing it through the generator network. At testing time, if the
intensity level masks are used without any modification, the output images are a
generated synthetic version of the input ones containing all the WMHs found in the
input image. Passing modified intensity level masks to the generator network will
generate these desired modifications (i.e, new MS lesions) on the output images.

Figure 5.4 depicts how lesion expert annotations for a patient image can be
generated on a healthy one through linear and nonlinear registration. After regis-
tration, the lesion mask and the eight intensity level masks of the patient subject
are resampled to the healthy space. We split the resampled binary lesion mask into
individual lesion volumes, in which every single lesion is defined as a spatially discon-
nected volume. After the lesion separation, the individual lesion volumes are dilated
to incorporate the hyperintensities surrounding the lesions that are not annotated
as lesion voxels. The intensity level masks of the dilated lesion volumes are copied
from the patient resampled masks to the healthy masks. Finally, the healthy images
plus their modified intensity level masks are passed through the generator network
to add new MS lesions to the synthetic output images. In the same way, new MS
lesions can be generated in patient images using patient-to-patient registration. In
longitudinal MS analysis, MS lesions are added only to the follow-up scans. So, the
new synthetic lesions on the follow-up image can be considered as new MS lesions
with respect to the baseline image. The follow-up image with the synthetic lesions
together with the untouched baseline are used as data augmentation to increase the
longitudinal MS lesion detection performance.
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(a) The MS lesion generation model.
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Figure 5.3: MS lesion generator architecture. Each input modality has its own
encoder that maps the input image modality to the 32-channel latent space. One
decoder is learned for each output modality. The encoder maps the 32-channel latent
representations to the outputs of that modality. Each decoder is used five times (i.e.,
shared decoder): once to decode each of the four individual latent representations
and once to decode the fused representation. At testing time, we used the synthesis
result from the fused representation as our output.
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Figure 5.4: Generating MS lesions on healthy subjects using linear/nonlinear re-
gistration. After registering the patient FLAIR to the healthy FLAIR, the lesion
mask and the intensity level masks of the patient were resampled to the healthy
space. The lesions from the patient resampled intensity level masks were copied to
the healthy intensity level masks. The healthy images combined with their modi-
fied intensity level masks were passed to the MS lesions generated to generate the
synthetic MS lesions on the healthy image.
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5.2.3 MS lesion segmentation approaches

In the cross-sectional MS lesion analysis, the segmentation framework used for evalu-
ating the proposed MS lesion generator is the state-of-the-art CNN model proposed
by Valverde et al. [28]. As described in section 2.2.3, their approach is based on
a cascade of two 3D patch-wise CNN and was the best ranked approach on the
MICCAI 2008 challenge and MICCAI MSSEG 2016. In the longitudinal MS lesion
analysis, our FCNN-based model (SimLearnedDFs) proposed in chapter 4 is used for
the evaluation. This DL-based model outperformed the LR-based model proposed
in chapter 3 and all the state-of-the-art unsupervised approaches.

5.3 Experimental setup

5.3.1 Datasets

Cross-sectional clinical MS dataset: This dataset consists of 15 healthy
subjects and 65 different patients with a CIS or early relapsing MS (Vall d’Hebron
Hospital Center, Barcelona, Spain) who underwent brain MRI for monitoring disease
evolution and treatment response. Each patient underwent brain MRI within the
first 3 months after the onset of symptoms. The scans for all the patients were
obtained in the same 3T magnet (Tim Trio; Siemens, Erlangen, Germany) with a 12-
channel phased array head coil. The MRI protocol included the following sequences:
1) transverse proton density (PD)- and T2-w fast spin-echo (TR = 3080 ms, TE
= 21 − 91 ms, voxel size = 0.78 × 0.78 × 3.0 mm3), 2) transverse fast FLAIR
(TR = 9000 ms, TE = 87 ms, TI = 2500 ms, flip angle = 120◦, voxel size =
0.49 × 0.49 × 3.0 mm3), and 3) sagittal T1-w 3D magnetization-prepared rapid
acquisition of gradient echo (TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, voxel size
= 1.0×1.0×1.2 mm3). The dataset was preprocessed as follows: for each patient, the
T1-w image was linearly registered to the FLAIR using Nifty Reg tools1 [220, 221].
Afterwards, a brain mask was identified and delineated on the registered T1-w image
using the ROBEX Tool2 [50]. Then, the two images underwent a bias field correction
step using the N4 algorithm from the ITK library3 with the standard parameters
for a maximum of 400 iterations [219].

ISBI2015 dataset: This dataset consists of 5 training and 14 testing subjects
with 4 or 5 different image time-points per subject from the ISBI2015 MS lesion
challenge [227]. Each scan was imaged and preprocessed in the same manner by
the own organizers, with data acquired on a 3.0 Tesla MRI scanner (Philips Med-
ical Systems, Best, The Netherlands) with T1-w MPRAGE, T2-w, PD and FLAIR
sequences. For more information about the image protocol and preprocessing de-

1https://sourceforge.net/projects/niftyreg/
2https://www.nitrc.org/projects/robex
3https://itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImageFilter.html
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tails, refer to the challenge organizers website4. On the challenge competition, each
subject image was evaluated independently, which led to a final training set and a
testing set composed of 21 and 61 images, respectively. Additionally, manual de-
lineations of MS lesions performed by two experts were included for each of the 21
training images.

MICCAI2016 dataset: This dataset consists of 15 training scans acquired in
three different scanner vendors: 5 scans (Philips Ingenia 3T), 5 scans (Siemens Aera
1.5T) and 5 scans (Siemens Verio 3T) from the MICCAI 2016 MS lesion segment-
ation challenge [259]. For each subject, 3D T1-w MPRAGE, 3D FLAIR, 3D T1-w
gadolinium enhanced and 2D T2-w/PD-w images are provided. Please refer to the
original publication for more details for the exact details of the acquisition paramet-
ers and image resolutions [259]. Manual lesion annotations for each training subject
are provided as a consensus mask among 7 different human raters. Preprocessed
images are already provided. The preprocessing pipeline consisted of a denoising
step with the NL-means algorithm [260] and a rigid registration [261] of all of the
modalities against the FLAIR image. Then, each of the modalities are skull-stripped
using the volBrain platform [262] and bias corrected using the N4 algorithm [51].
Finally, all the training images were also interpolated to (= 1.0 × 1.0 × 1.0 mm3))
using the FSL-FLIRT utility [263].

Longitudinal clinical MS dataset: This database is the same in-house dataset
(VH dataset) used in the evaluation of our longitudinal approaches proposed in
chapters 3 and 4. It consists of images from 60 different patients with a CIS or
early relapsing MS. 36 of the patients confirmed MS with new T2-w lesions, while
24 patients did not present new T2-w lesions. The dataset was preprocessed the
same way as described before. ROBEX Tool was used to get the brain mask. The
four images underwent a bias field correction step using the N4. Finally, Nyúl et al.
[61] histogram matching approach was used for intensity normalization. See section
3.3.1 for more details.

For all datasets, brain tissue volume was computed using the FAST segmentation
method [88]. As explained in Section 5.2.1, the WMH mask and the eight intensity
level masks were computed by FLAIR thresholding and all the used modalities were
filled using the γ = 0.5 WMH mask.

5.3.2 MS lesion generator training and implementation

The proposed generator was evaluated to improve the performance of the cross-
sectional and longitudinal MS lesions detection and segmentation approaches. In
the cross-sectional evaluation, the proposed pipeline was used to generate MS lesions
on T1-w and FLAIR images using only two encoders and two decoders, while in the
longitudinal evaluation, it was extended to generate MS lesions on T1-w, T2-w,
PD-w, and FLAIR images through the addition of two other encoder/decoder. To
perform our experimental tests, we trained the lesion generator models into two

4http://iacl.ece.jhu.edu/index.php/MSChallenge/data
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different scenarios, one being the cross-sectional MS clinical dataset and the other
one the ISBI2015 dataset (see Table 5.1 for the images used for training). For
training the generation network, 2D 64x64 patches with step size of 32x32 were
extracted from the original images, the filled images, and the eight intensity level
masks. The extracted patches were split into training and validation sets (70% for
training and 30% for validation). The training set was used to adjust the weights
of the neural network, while the validation set was used to measure how well the
trained model was performing after each epoch. The extracted patches were passed
to the network for training in mini batches of size 32 and the network was set to
train for 200 epochs. To prevent overfitting, the training process was automatically
terminated when the validation accuracy did not increase after 15 epochs. Regarding
the MS lesion segmentation framework, the CNN training and inference procedures
were identical to those proposed by Valverde et al. [28].

The proposed method has been implemented in Python, using Keras with the
TensorFlow backend [251]. All experiments have been run on a GNU/Linux machine
box running Ubuntu 18.04, with 128 GB RAM memory. The model training was
carried out on a single TITAN-X GPU (NVIDIA Corp, United States) with 12 GB
RAM memory. To promote the reproducibility and usability of our research, the
proposed MS lesion generation pipeline is currently available for downloading at our
research website5.

5.3.3 Evaluation metrics

To evaluate the performance of the proposed MS lesion generator, we computed
the similarity between the original and the synthetic images using the following
similarity metrics:

• Mean Square Error (MSE):

MSE(G, R) =
1
N

N∑

i=1

(Gi − Ri)2

where G and R are the intensities of the generated and the real images, re-
spectively, and N is the number of voxels in the R image.

• Structural Similarity Index (SSIM):

SSIM(G, R) =
(2µGµR + c1)(2σGR + c2)

(µ2

G + µ2

R + c1)(σ2

G + σ2

R + c2)

where (µG, σ2

G) and (µR, σ2

R) are the intensity’s (mean, variance) of the gen-
erated and the real images, respectively, and σGR is the covariance between

5https://github.com/NIC-VICOROB/MS_Lesions_Generator
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them, c1 and c2 are two constants to stabilize the division with weak denom-
inator. SSIM actually measures the perceptual difference between two similar
images.

On the other hand, the quantitative evaluation of the proposed MS lesion generator
was performed by segmenting both the original and synthetic images individually
using the same MS lesion segmentation framework and comparing the difference
between the segmentation results. As explained before, the segmentation framework
used to evaluate the proposed MS lesion generator is the MS lesion segmentation
method proposed by Valverde et al. [28], although the proposed data augmentation
strategy could be applied to any approach. The evaluation of the resulting seg-
mentations against the available lesion annotations was carried out using standard
evaluation metrics such as DSC, sensitivity, and precision. A paired t-test at the 5%
level was used to evaluate the significance of the data augmentation results. Signi-
ficant results are shown in bold in all tables. For the longitudinal evaluation, the
same standard measures such as TPF, FPF, and the Dice were used for the quant-
itative analysis as described in section 4.3.3. The automatic segmentation masks
were obtained by thresholding the probability maps with 0.5 (using argmax), and
all automatic lesions with a size of 3 voxels or less were removed.

5.4 Cross-sectional: Experiments and results

5.4.1 MS lesion synthesis

In these experiments, qualitative and quantitative evaluations were undertaken by
measuring the similarities between the real and the synthetic images in terms of
MSE and SSIM metrics and in terms of cross-sectional MS lesion detection and
segmentation using a state-of-the-art MS lesion segmentation method [28] and the
evaluation metrics described in section 5.3.3 (see Table 5.1 for the images used).

Evaluation

Cross-sectional clinical MS dataset: Both VHtrain and VHtest sets were
generated using the proposed MS generator yielding VHtrainGen and VHtestGen,
respectively. The evaluation of the proposed MS generator on this dataset was per-
formed by measuring the MSE and SSIM metrics between the real and the synthetic
images (using Group B images, see Table 5.1) and by training and testing the MS
lesion segmentation model [28] as follows: 1) training with the VHtrain set and
testing on the VHtest set; 2) training with the VHtrainGen set and testing on the
VHtestGen set; 3) training with the VHtrainGen set and testing on the VHtest set;
and 4) training with the VHtrain set and testing on the VHtestGen set.

ISBI2015 dataset: The ISBItrain set was generated using the proposed MS
generator yielding ISBItrainGen. Note that the evaluation of the ISBI 2015 chal-
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lenge is performed blind by submitting the segmentation masks of the 61 testing
cases to the challenge website evaluation platform6. The evaluation of the proposed
MS generator on this dataset was performed by measuring the MSE and SSIM met-
rics between the real and the synthetic images (using ISBItrain set, see Table 5.1).
The performance of the two MS lesion segmentation models, one trained with the
ISBItrain set and the other trained with the ISBItrainGen set, was evaluated by sub-
mitting to the challenge’s evaluation platform, and comparing the accuracy between
them.

MS lesion generation on healthy subjects: To evaluate the generation of
MS lesions on healthy subjects by using registration, the MS lesions of the VHtrain
dataset were generated on the VHhealthy images using linear and nonlinear re-
gistration as described in section 5.2.2. We refer to them as VHGenLinear and
VHGenNonlinear, respectively. The evaluation of the proposed MS generator on
these datasets was performed by training 3 MS lesion segmentation models using
the VHGenLinear, the VHGenNonlinear, and (VHGenLinear + VHGenNonlinear)
and testing on the VHtest set.

Results

Table 5.2 summarizes the MSE and SSIM between the real and synthetic images of
the cross-sectional clinical MS and ISBI2015 datasets. Furthermore, the MSE and
SSIM of γ = 0.5 WMH mask voxels are reported. The MSE and SSIM between the
non-background voxels are better than γ = 0.5 WMH mask voxels. Also, we can
see that the synthetic FLAIR images are close to the real ones than T1-w images
inside γ = 0.5 WMH mask voxels for the two datasets. Figure 5.5 and 5.6 show the
qualitative assessment of the proposed MS lesion generator of the cross-sectional
clinical MS and ISBI2015 datasets, respectively. Figure 5.7 shows the qualitative
assessment of the proposed MS lesion generator of the synthetic MS lesions generated
on healthy subjects using linear/nonlinear registration. The slices are also displayed
using jet color maps to show the similarity of intensities inside the original and the
synthetic lesions. One of the advantages of using the intensity level masks described
in section 5.2.1 is the appearance of the gradients inside the lesions of the synthetic
images. Table 5.3 summarizes the MS lesion detection and segmentation results,
showing the obtained mean values when training with the original and synthetic
images of the clinical MS and ISBI2015 datasets. The performance was very similar
in terms of the three evaluation metrics when training with real or synthetic images
and testing on the real images for the two datasets. The mean results when training
with the synthetic MS lesions generated on healthy images using the clinical MS
dataset lesion set are shown in Table 5.4.

6https://smart-stats-tools.org/node/26
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Table 5.2: Similarity results. MSE and SSIM between the original and synthetic
images of the cross-sectional clinical MS (Group B set) and ISBI2015 (ISBItrain set)
datasets for nonbackground and γ = 0.5 WMH mask. The reported values are the
mean ± standard deviation.

Cross-sectional clinical MS dataset (Group B set)
Non-background voxels γ = 0.5 WMH mask voxels

MSE SSIM MSE SSIM
T1-w 0.03 ± 0.01 0.96 ± 0.01 0.07 ± 0.03 0.93 ± 0.03
FLAIR 0.02 ± 0.01 0.98 ± 0.02 0.03 ± 0.07 0.98 ± 0.01

ISBI2015 dataset (ISBItrain images)
Non-background voxels γ = 0.5 WMH mask voxels

MSE SSIM MSE SSIM
T1-w 0.03 ± 0.01 0.97 ± 0.01 0.13 ± 0.05 0.94 ± 0.03
FLAIR 0.01 ± 0.01 0.98 ± 0.01 0.01 ± 0.01 0.99 ± 0.01

Table 5.3: Lesion segmentation and detection results. Comparison between the
training using original images and synthetic images on Cross-sectional clinical MS
and ISBI2015 datasets. For each coefficient (DSC, sensitivity, and precision), the
reported values are the mean ± standard deviation. For the ISBI2015 dataset, the
reported values are extracted from the challenge results board.

Cross-sectional clinical MS dataset
Train/Test DSC sensitivity precision

VHtrain/VHtest 0.70 ± 0.16 0.69 ± 0.13 0.73 ± 0.15
VHtrainGen/VHtest 0.68 ± 0.16 0.72 ± 0.14 0.71 ± 0.13
VHtrainGen/VHtestGen 0.67 ± 0.17 0.65 ± 0.14 0.70 ± 0.17
VHtrain/VHtestGen 0.68 ± 0.15 0.66 ± 0.15 0.70 ± 0.16

ISBI2015 dataset
Train/Test DSC sensitivity precision

ISBItrain/ISBItest 0.64 ± 0.12 0.57 ± 0.16 0.79 ± 0.12
ISBItrainGen/ISBItest 0.64 ± 0.13 0.56 ± 0.17 0.80 ± 0.14

Table 5.4: Cross-sectional clinical MS dataset results of training using synthetic im-
ages generated on healthy subjects as described in section 5.2.2. For each coefficient
(DSC, sensitivity, and precision), the reported values are the mean ± standard
deviation.
Train/Test DSC sensitivity precision

VHGenLinear/VHtest 0.63 ± 0.21 0.63 ± 0.17 0.63 ± 0.16
VHGenNonlinear/VHtest 0.63 ± 0.20 0.62 ± 0.14 0.62 ± 0.16
Both/VHtest 0.65 ± 0.20 0.64 ± 0.14 0.64 ± 0.17
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Figure 5.5: Qualitative assessment of the proposed MS lesions generator on cross-
sectional clinical MS dataset. Slices are also displayed using jet color maps to visually
enhance the intensities.
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Figure 5.6: Qualitative assessment of the proposed MS lesions generator on
ISBI2015 dataset. Slices are also displayed using jet color maps to visually enhance
the intensities.
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Figure 5.7: Synthetic MS lesions generated on a healthy subject using lin-
ear/nonlinear registration. Slices are also displayed using jet color maps to visually
enhance the intensities.
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Discussion

We demonstrated the similarity between the synthetic and real lesions qualitatively
and quantitatively on patient and healthy subjects. Synthetic images are very similar
to the real ones in terms of the two similarity metrics for nonbackground and γ = 0.5
WMH mask voxels for both datasets. Regarding the MS lesion segmentation results,
the experiments show how similar the training is using real or synthetic images in
terms of MS lesion detection. Regarding the MS clinical dataset, the performance
is 2% less in terms of DSC and precision when training with the synthetic images
than training with the real images. However, similar results were obtained when
training with real images and testing on synthetic images. From the results obtained,
synthetic images could be used as training or testing images. We only used synthetic
images as testing images to evaluate how good they are when training with real
images. Regarding the ISBI2015 datasets, the performance was very similar in
terms of the three evaluation metrics. Regarding the training using synthetic MS
lesions generated on healthy subjects, good segmentation and detection results were
obtained when training with synthetic images generated on healthy subjects. The
performance is also very similar when training with synthetic images generated using
linear, nonlinear registration or both.

5.4.2 Data augmentation experiments

In these experiments, we evaluated the use of the proposed MS lesion generator
as a data augmentation method by generating the lesion masks on healthy images
from the same domain using registration as described in section 5.2.2. The two
deformed generated lesion masks (from linear and nonlinear registration) and the
correspondent two synthetic images were added to the original patient image during
training as data augmentation.

Evaluation

Cross-sectional clinical MS dataset: For each patient image from the VHtrain
set, we created two synthetic images with lesions on a healthy image from the
VHhealthy set (VHGenLinear and VHGenNonlinear) as described in section 5.2.2.
Those two synthetic images were used together with the original image as data
augmentation in the following experimental tests: 1) to analyze the effect of the
synthetic data augmentation images on the segmentation performance while train-
ing with different number of training images, two models were trained using 1, 2, 3,
5, 10 or all of the available training images, with one model using the original images
and the other using the same original images plus their synthetic data augmenta-
tion images; and 2) to simulate a situation with limited training data, we analyzed
the effect of the synthetic data augmentation on the segmentation performance in
the scenario of having only one-image for training. Using a single training image
with a lesion volume in the range of 0.34 − 49.4 ml, two models were trained. One
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model used the original image (i.e., from VHtrain) and the other used the same
original image plus the two synthetic images generated on the healthy image (i.e.,
from VHGenLinear and VHGenNonlinear).

ISBI2015 dataset: To simulate a situation with limited training data, we
analyzed the effect of the synthetic data augmentation images on the segmentation
performance in the one-image training scenario on the overall performance of the
testing set. To do so, we chose a single training image from each training subject
(ISBItrain), which led to 5 different training sets with a varying number of lesions
and a total lesion volume in the range 2.3 − 26.8 ml. Since there were no healthy
subjects available from this challenge, we chose the fourth training subject (this
image has the smallest lesion load; ≈ 2.3 ml) and filled it as described in section
5.2.1 (but only MS lesions were filled instead of the WMH areas). We considered
this image as a healthy subject and we refer to it as ISBI-H. The MS lesions of
each of the four selected ISBI images were generated on the ISBI-H using linear and
nonlinear registration, as described in section 5.2.2, yielding, for each patient image
from the selected four, two generated images and their correspondent lesion masks
that were used as data augmentation. Based on this, we undertook the following
experiments. 1) To simulate a situation with limited training data, we analyzed the
effect of the synthetic data augmentation images on the segmentation performance in
the one-image training scenario. Using a single training image from the four images
selected, two models were trained, one using the original image and the other using
the original image plus its two synthetic images generated on ISBI-H using linear and
nonlinear registration. 2) To determine the performance of all the models trained
on the blind test set, all trained models from the previous experiment were sent to
the challenge’s evaluation platform, comparing its accuracy to those of the other
submitted MS lesion segmentation pipelines fully trained using the entire available
training set. Among the set of evaluated coefficients computed in the challenge, only
the DSC, sensitivity and precision metrics are shown for comparison.

Results

Regarding the cross-sectional clinical MS dataset, Figure 5.8 shows the DSC, sensit-
ivity and precision coefficients of different models trained using different number of
training images, which ranged from 1 to 15 images. Table 5.5 shows the DSC, sensit-
ivity and precision coefficients of the models under the one-image training scenario.
Regarding the ISBI2015 dataset, Table 5.6 shows the performance of each of the
one-image scenario models when trained on different images with varying degrees
of lesion size. Table 5.7 shows the performance of the models trained with ISBI02
plus DA against different top rank participant challenge strategies. From the list of
compared methods, the best five strategies were based on CNN models (Andermatt
et al. [264], Salehi et al. [265], Valverde et al. [28], Birenbaum and Greenspan [266]),
while the others were based on either other supervised learning techniques (Valcar-
cel et al. [267], Deshpande et al. [268], Sudre et al. [269]) or unsupervised intensity
models (Shiee et al. [270], Jain et al. [271]).
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Figure 5.8: Effect of the number of training images and their DA images on the
DSC, sensitivity and precision coefficients when evaluated on the cross-sectional
clinical MS dataset. The represented value for each configuration is computed as
the mean DSC, sensitivity and precision scores over the 14 VHtest images.
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Table 5.5: One-image scenario for the cross-sectional clinical MS dataset: DSC,
sensitivity and precision coefficients for two models, one model trained using a
single original image (ORG) and the other one trained using same single image plus
its synthetic data augmentation images (DA) with varying degrees of lesion load.
For each coefficient, the reported values are the mean ± standard deviation when
evaluated on the VHtest set. Significant results are shown in bold (p < 0.05).
lesion vol (num lesions) DSC sensitivity precision

0.34 ml (18 lesions) ORG 0.18 ± 0.11 0.43 ± 0.13 0.41 ± 0.11
DA 0.29 ± 0.14 0.48 ± 0.15 0.61 ± 0.20

1.0 ml (6 lesions) ORG 0.35 ± 0.25 0.23 ± 0.15 0.35 ± 0.29
DA 0.47 ± 0.25 0.27 ± 0.14 0.37 ± 0.21

2.0 ml (25 lesions) ORG 0.53 ± 0.19 0.43 ± 0.16 0.62 ± 0.26
DA 0.57 ± 0.20 0.54 ± 0.14 0.64 ± 0.28

5.5 ml (15 lesions) ORG 0.28 ± 0.15 0.28 ± 0.12 0.32 ± 0.14
DA 0.32 ± 0.12 0.35 ± 0.13 0.38 ± 0.12

7.6 ml (42 lesions) ORG 0.57 ± 0.25 0.41 ± 0.16 0.53 ± 0.23
DA 0.63 ± 0.20 0.50 ± 0.16 0.65 ± 0.21

21.5 ml (181 lesions) ORG 0.61 ± 0.21 0.61 ± 0.18 0.54 ± 0.14
DA 0.63 ± 0.20 0.66 ± 0.14 0.60 ± 0.14

49.4 ml (53 lesions) ORG 0.57 ± 0.25 0.58 ± 0.20 0.56 ± 0.22
DA 0.58 ± 0.25 0.67 ± 0.18 0.60 ± 0.13

Table 5.6: One-image scenario for the ISBI2015 dataset: DSC, sensitivity,
precision, and overall score coefficients for two models, one model trained using
a single original image (ORG) and the other one trained using same single image
plus its synthetic data augmentation images (DA). The reported values are extracted
from the challenge results board. For each coefficient, the reported values are the
mean ± standard deviation when evaluated on the ISBItest set. Significant results
are shown in bold (p < 0.05).
lesion vol (num lesions) DSC sensitivity precision score

ISBI01 ORG 0.41 ± 0.13 0.30 ± 0.12 0.75 ± 0.19 87.60
DA 0.54 ± 0.13 0.45 ± 0.15 0.75 ± 0.17 89.54

ISBI02 ORG 0.53 ± 0.18 0.44 ± 0.19 0.76 ± 0.21 88.60
DA 0.59 ± 0.15 0.51 ± 0.19 0.78 ± 0.18 90.05

ISBI03 ORG 0.49 ± 0.13 0.39 ± 0.14 0.74 ± 0.18 88.67
DA 0.49 ± 0.12 0.39 ± 0.14 0.77 ± 0.15 89.55

ISBI05 ORG 0.39 ± 0.13 0.29 ± 0.13 0.73 ± 0.17 88.02
DA 0.42 ± 0.13 0.30 ± 0.12 0.79 ± 0.16 88.66
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Table 5.7: ISBI2015 challenge: DSC, sensitivity, precision and overall score coef-
ficients for the best one-image scenario with the data augmentation model (ISBI02
+ DA). The obtained results are compared with different top rank participant
strategies and also with the same model fully trained on all the available data. For
each method, the reported values are extracted from the challenge results board.
The reported values are the mean (standard deviation) when evaluated on the 61
testing images. The performance of the methods with an overall score ≥ 90 is
considered to be similar to human performance.
Method DSC sensitivity precision score

Andermatt et al. [264] 0.63 ± 0.14 0.54 ± 0.19 0.84 ± 0.10 92.07
Salehi et al. [265] 0.66 ± 0.11 0.67 ± 0.20 0.71 ± 0.16 91.52
Valverde et al. [28] 0.64 ± 0.12 0.57 ± 0.17 0.79 ± 0.15 91.44
Birenbaum and Greenspan [266] 0.63 ± 0.14 0.55 ± 0.18 0.80 ± 0.15 91.26
Deshpande et al. [268] 0.60 ± 0.13 0.55 ± 0.17 0.73 ± 0.18 89.81
Jain et al. [271] 0.55 ± 0.14 0.47 ± 0.15 0.73 ± 0.20 88.74
Shiee et al. [270] 0.55 ± 0.19 0.54 ± 0.15 0.70 ± 0.29 88.46
Valcarcel et al. [267] 0.57 ± 0.13 0.57 ± 0.18 0.61 ± 0.16 87.71
Sudre et al. [269] 0.52 ± 0.14 0.46 ± 0.15 0.66 ± 0.18 86.44
Full train 0.63 ± 0.13 0.55 ± 0.16 0.79 ± 0.14 91.33
ISBI02 + DA 0.59 ± 0.15 0.51 ± 0.19 0.78 ± 0.18 90.05

Discussion

We demonstrated the effect of data augmentation on the MS lesion segmentation
performance when increasing the number of the training images. The difference
in performance between training with original images and original images plus DA
decreases in terms of the three metric coefficients as the number of the training
images increases. The DA images generated from linear and nonlinear registration
do not give more variability to the training data when increasing the number of
training images. Furthermore, to simulate a situation with limited training data,
we analyzed the effect of one-image training scenario. Regarding the MS clinical
dataset, significant improvement was obtained in terms of the three metric coeffi-
cients with a lesion volume in the range of 0.34 − 49.4 ml. Regarding the ISBI2015
dataset, a significant improvement was obtained in terms of the three metric coef-
ficients, except for ISBI03, where only a significant improvement in precision was
obtained. Comparing the accuracy of the best performing model (ISBI02+DA) to
those of the other submitted MS lesion segmentation pipelines fully trained using
the entire available training set, the proposed one image plus its data augmentation
images reported a performance similar to that of the same fully trained cascaded
CNN architecture (score 91.44) [28], which shows the improvement of the proposed
data augmentation strategy to the training used with limited training data.
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5.5 Longitudinal: Experiments and results

5.5.1 Longitudinal synthetic lesions

In these experiments, qualitative and quantitative evaluations were undertaken in
terms of longitudinal MS lesion detection using our approach (SimLearnedDFs) pro-
posed in chapter 4 and the evaluation metrics described in section 5.3.3.

Evaluation

First, the lesion masks of the three cross-sectional datasets (cross-sectional clinical
MS (Group B), MICCAI2016, and ISBI2015) were used to generate synthetic MS
lesions on the follow-up images using the LongNoNewLesions images (the 24 longit-
udinal images with no new MS lesions). The baseline images of LongNoNewLesions
were also generated but without adding any synthetic lesions. For ISBI2015, we
chose a single training image from each training subject (ISBItrain). Some lesion
masks from ISBItrain and MICCAI2016 datasets were duplicated to have 24 lesion
masks. The generator was trained using the 36 cross-sectional images (Group A) de-
scribed in table 5.1. So, we had three synthetic longitudinal datasets (Long-Clinical,
Long-MICCAI, and Long-ISBI) with 24 images each yielding from cross-sectional
clinical MS (Group B), MICCAI2016, and ISBI2015 datasets, respectively. The eval-
uation of the proposed MS generator was performed by training our FCNN-based
model (SimLearnedDFs) proposed in chapter 4 with each of the three synthetic lon-
gitudinal datasets (Long-Clinical, Long-MICCAI, and Long-ISBI) and testing on
the LongNewLesions images (the 36 longitudinal images with new MS lesions). We
also included two unsupervised state-of-the-art approaches for comparison [33, 149].
A paired t-test at the 5% level was used to evaluate the significance of the results
of using the synthetic longitudinal datasets and two unsupervised state-of-the-art
approaches [33, 149].

Results

Figure 5.9 shows the qualitative assessment of the proposed MS lesion generator
of the synthetic MS lesions generated on the follow-up images with no new MS
lesions using linear/nonlinear registration. The slices are also displayed using jet
color maps to show the similarity of intensities inside the original and the synthetic
lesions. Table 5.8 summarizes the new MS lesion detection results, showing the
obtained mean values when training with the three synthetic longitudinal datasets
(Long-Clinical, Long-MICCAI2016, and Long-ISBI2015) and testing on the Long-
NewLesions set. Moreover, Figure 5.10 shows a visual example of new MS lesion
detection from the obtained results.



107 5.5. Longitudinal: Experiments and results

Figure 5.9: Synthetic MS lesions generated on the follow-up images with no new
MS lesions using linear/nonlinear registration. Slices are also displayed using jet
color maps to visually enhance the intensities.
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Figure 5.10: An example of new MS lesion detection when training with syn-
thetic longitudinal datasets. (a) and (b) show one axial slice of the T2-w image at
baseline and follow-up, respectively. (c) shows the new MS lesions annotations per-
formed by an expert (GT). (d), (e), and (f) show the segmentation when training the
SimLearnedDFs model with each of Long-Clinical, Long-MICCAI, and Long-ISBI
datasets, respectively. The GT and the segmentations are overlaid in green and red,
respectively, on the follow-up T2-w image.
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Table 5.8: Comparison between training the SimLearnedDFs model with each of
the three synthetic longitudinal datasets (Long-Clinical, Long-MICCAI, and Long-
ISBI). The results represent the mean detection TPF , FPF , DSCd and mean seg-
mentation DSCs when testing the 36 MS patients (LongNewLesions images). The
automatic segmentation masks were obtained by thresholding the probability maps
with 0.5 (using argmax), and all automatic lesions with a size lower than three voxels
were removed.
Training dataset TPF FPF DSCd DSCs

Long-Clinical 78.16 ± 24.90 25.27 ± 27.62 0.71 ± 0.25 0.50 ± 0.23
Long-MICCAI 69.13 ± 30.64 17.06 ± 26.38 0.68 ± 00.29 0.46 ± 00.24
Long-ISBI 64.44 ± 35.23 25.31 ± 27.96 0.60 ± 0.32 0.38 ± 0.25
Cabezas et al. [33] 70.93 ± 34.48 17.80 ± 27.96 0.68 ± 0.33 0.53 ± 0.24
Schmidt et al. [149] 68.66 ± 35.26 31.89 ± 36.10 0.62 ± 0.34 0.40 ± 0.25

Discussion

The experiments show that the longitudinal synthetic datasets generated using cross-
sectional MS lesions could be used alone for training a new lesion detection model.
From the obtained results, training with Long-Clinical was significantly better than
the two unsupervised approaches [33, 149] in terms of TPF while training with the
other two datasets (Long-MICCAI, and Long-ISBI) were similar to the unsupervised
approaches (p < 0.05).

5.5.2 Data augmentation experiments

In these experiments, we evaluated the use of the proposed MS lesion generator as a
longitudinal data augmentation method. The three synthetic longitudinal datasets
(Long-Clinical, Long-ISBI, and Long-MICCAI) were used as data augmentation.

Evaluation

The LongNewLesions images (the 36 longitudinal images with new MS lesions) were
randomly split into training set (LongTrain) and testing set (LongTest). Each set
had 18 images. The evaluation of the proposed MS generator was performed by
training and testing the SimLearnedDFs model as follows: 1) training with the
LongTrain set and testing on the LongTest set; 2) training with the LongTrain set
together with each of the three synthetic longitudinal datasets (Long-Clinical, Long-
MICCAI, and Long-ISBI) as data augmentation and testing on the LongTest set.
A paired t-test at the 5% level was used to evaluate the significance of the results
of using the synthetic longitudinal datasets as data augmentation.
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Table 5.9: Longitudinal synthetic datasets as data augmentation. The results
represent the mean detection TPF , FPF , DSCd and mean segmentation DSCs

for training the SimLearnedDFs model with LongTrain set and with LongTrain plus
each of the three synthetic longitudinal datasets (Long-Clinical, Long-MICCAI, and
Long-ISBI) as data augmentation. For each coefficient, the reported values are the
mean ± standard deviation when evaluated on the LongTest set. The automatic
segmentation masks were obtained by thresholding the probability maps with 0.5
(using argmax), and all automatic lesions with a size lower than three voxels were
removed. Significant results are shown in bold (p < 0.05).
Training dataset TPF FPF DSCd DSCs

LongTrain 52.09 ± 34.72 12.62 ± 22.13 0.57 ± 0.35 0.39 ± 0.28
LongTrain +
(Long-Clinical) 73.32 ± 30.56 10.72 ± 18.09 0.75 ± 0.27 0.50 ± 0.24
(Long-MICCAI) 65.60 ± 34.64 10.10 ± 15.64 0.68 ± 0.31 0.46 ± 0.28
(Long-ISBI) 60.51 ± 34.12 10.83 ± 20.43 0.65 ± 0.32 0.43 ± 0.27

Results

Table 5.9 summarizes the new T2-w lesion detection and segmentation mean res-
ults for training the SimLearnedDFs with the three synthetic longitudinal datasets
(Long-Clinical, Long-MICCAI, and Long-ISBI) as data augmentation.

Discussion

Regarding the data augmentation experiments, we showed the effect of data aug-
mentation on the longitudinal MS lesion detection performance when adding the
longitudinal synthetic datasets to the training images. In terms of TPF, adding the
longitudinal synthetic datasets was significantly better (p < 0.05). In terms of FPF,
the results were not significantly better (about 2% improvement).

5.6 Discussion

We proposed a synthetic MS lesion generator pipeline that generates synthetic im-
ages with MS lesions. The use of the intensity level masks enabled us to train the
model without the need of ground truth. Furthermore, the intensity level masks
help the MS lesion generator to preserve the intensity gradients inside the synthetic
MS lesion. The proposed pipeline was used to improve the cross-sectional and lon-
gitudinal MS lesion approaches. In the cross-sectional analysis, the pipeline was
used to generate MS lesions on T1-w and FLAIR images using only two encoders
and two decoders, while in the longitudinal analysis, it was extended to generate
MS lesions on T1-w, T2-w, PD-w, and FLAIR images through the addition of two
other encoder/decoder.
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In conclusion, the obtained results indicate that the proposed pipeline is able
to generate useful synthetic images with MS lesions that do not differ from real
images. Also, the combination of the synthetic MS lesions generated on healthy
images and original patient images from the same domain increases the segmentation
and detection accuracy of MS lesions. Moreover, the proposed pipeline is also able
to generate synthetic MS lesions on the follow-up images of longitudinal images with
no new MS lesions. These images could be used for training or for increasing the
performance of new MS lesion detection approaches.





CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and contributions of the thesis

The aim of this PhD thesis has been the proposal of novel and fully automated
methods for the detection of new T2-w lesions in MR images of MS patients. After
reviewing the state-of-the-art of the new T2-w MS lesions detection, we observed
the importance of using prior knowledge. Prior knowledge is important to guide
the lesion detection and segmentation. Supervised approaches that rely on similar
segmented cases usually outperform unsupervised strategies. Moreover, we noticed
the effect of the tissue transformation and the mass effect for new T2-w lesion
detection. We realized that deformation field-based algorithms have allowed the
mass effect of the lesions to be considered. Therefore, we analyzed a basic supervised
machine learning approach based on DF as a starting point for new MS lesions
detection in longitudinal analysis. Following the same objectives defined in the
Introduction, in what follows we summarize the main conclusions and contributions
of this PhD thesis:

• We proposed and evaluated a novel fully automated supervised framework
with intensity subtraction and deformation field for the detection of new
T2-w lesions. For each modality (T1-w, T2-w, PD-w, and FLAIR), an af-
fine transformation from baseline to follow-up was computed and the images
were subtracted. The DF were obtained using the multi-resolution Demons
registration approach from ITK v.4. The DF information was incorporated
as features, in particular, we computed three DF operators (Jacobian, Diver-
gence, and NormDiv) at each voxel. Then, a voxel-level logistic regression
classifier was trained to predict the lesion probability of each voxel using the
baseline and follow-up intensities, subtraction values, and the DF operators
for T1-w, T2-w, PD-w, and FLAIR images. As a post-processing, the probab-
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ilistic maps were thresholded to obtain a binary segmentation where all lesions
smaller than three voxels were removed. We evaluated the performance of the
model following a leave-one-out cross-validation scheme using an in-house clin-
ical dataset (60 different patients: 36 of the patients confirmed MS with new
T2-w lesions, while 24 patients did not present new T2-w lesions) from our
collaborators. The obtained results were compared with those of recent state-
of-the-art approaches. The performance of our model was significantly higher
than state-of-the-art methods. Moreover, we studied the impact of both the
deformation field operators and the baseline intensities features in the detec-
tion and segmentation of new T2-w lesions by analyzing the different models
(LR-NDFNB, LR-NDF, LR-DFNB, LR-DF). We also studied the performance
of these models and the state-of-the-art methods according to the different le-
sion sizes. In conclusion, the obtained results indicate that the combination of
DFs and supervised classification increases the accuracy when detecting new
T2-w lesions. We released a public version of the proposed method that can
be downloaded for free from our research team web page 1. This software is
already being used in the collaborating hospitals. Furthermore, this entire
analysis has been published in the following paper:

Paper published in the NeuroImage: Clinical
Title: A supervised framework with intensity subtraction and deformation
field features for the detection of new T2-w lesions in multiple sclerosis.
Volume: 17, Pages: 607-615, Published: November, 2017.
DOI: 10.1016/j.nicl.2017.11.015
[JCR N IF 3.943, Q1(3/14)]

• We proposed and evaluated a new deep learning based model to detect new
T2-w lesions in longitudinal brain MR images. The aim of this approach was
to eliminate the feature extraction step that was needed to extract important
features from input images before the training process. The method was also
based on DF features. The DFs were not computed using classic registration
approaches that establish a dense nonlinear correspondence between a pair of
3D brain scans but using a learning-based method that learns a parametrized
registration function from a collection of images during training. The proposed
network was an FCNN that takes four image modalities (T1-w, T2-w, PD-w,
and FLAIR) in both baseline and follow-up as inputs and outputs the new
T2-w lesion segmentation. The network consisted of two parts. The first part
of the network consisted of U-Net blocks that learned the deformation fields
(DFs) and nonlinearly registered the baseline image to the follow-up image for
each input modality. The second part of the network was another U-Net that
performed the final detection and segments the new T2-w lesions. The DFs
and the new T2-w lesions were learned simultaneously using a combined loss

1https://github.com/NIC-VICOROB/LR-T2-w-Lesions
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function. The loss function used in this work was the summation of two loss
functions. The first function was an unsupervised loss function that controls
the registration part of the network and the second function was a supervised
loss function CrossEntropy that controls the segmentation part of the net-
work and penalizes differences between the segmentation and ground truth.
We evaluated the performance of the model following a leave-one-out cross-
validation scheme using the in-house clinical dataset (60 different patients:
36 of the patients confirmed MS with new T2-w lesions, while 24 patients
did not present new T2-w lesions) from our collaborators. The performance
of our model was significantly better compared to the state-of-the-art meth-
ods. Similarly to the evaluation of the LR-based model proposed, we also
studied the performance of the model according to the different lesion sizes.
Moreover, we demonstrated the contribution of simultaneously learning both
the DF and the segmentation of new T2-w lesions by analyzing three other
models (SepLearnedDFs, DemonsDFs, and NDFs). As the MRI criteria for
dissemination in space consider the lesion type and location, we also studied
the performance of the proposed model, the three variants (SepLearnedDFs,
DemonsDFs, NDFs), and the state-of-the-art approaches on different brain re-
gions (periventricular, juxtacortical, infratentorial, and deep white matter).
We also analyzed the generalization and the performance of the proposed ap-
proach when tested in images from a different scanner and image acquisition
protocol, we performed a new experiment with data from another collaborat-
ing Hospital. In conclusion, the obtained results indicate that the proposed
end-to-end training model increases the accuracy of the new T2-w lesion de-
tection. The results also indicate that the DL based model is better that the
proposed LR-based model. Given the sensitivity and limited number of false
positives, we strongly believe that the proposed method may be used in clin-
ical studies in order to monitor the progression of the disease. This software
is going to be used in the collaborating hospitals. Furthermore, this entire
analysis has been submitted in the following manuscript:

Paper published in the NeuroImage: Clinical
Title: A fully convolutional neural network for new T2-w lesion detection in
multiple sclerosis.
Volume: 25, 102149, Published: December, 2019.
DOI: 10.1016/j.nicl.2019.102149
[JCR N IF 3.943, Q1(3/14)]

• Finally, we proposed and evaluated a novel deep learning based approach
model for MS lesion synthesis on MR images with the final aim to improve the
performance of supervised machine learning algorithms, therefore avoiding the
problem of the lack of available ground truth. We proposed a FCNN model
for MS lesion synthesis in MR images. The lesion information was encoded
as discrete binary intensity level masks passed to the model and stacked with
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the input images. The model was trained end-to-end without the need for
manually annotating the lesions in the training set. We then performed the
generation of synthetic lesions on healthy images via registration of patient
images, which were subsequently used for data augmentation to increase the
performance for supervised MS lesion detection algorithms. The proposed
model was evaluated on improving the cross-sectional and longitudinal MS
lesion detection and segmentation approaches. Regarding the cross-sectional
evaluation, our pipeline was evaluated on MS patient data from an in-house
clinical dataset and the public ISBI2015 challenge dataset. The evaluation was
based on measuring the similarities between the real and the synthetic images
as well as in terms of lesion detection performance by segmenting both the
original and synthetic images individually using a state-of-the-art segment-
ation framework. We also demonstrated the usage of synthetic MS lesions
generated on healthy images as data augmentation. We analyzed a scenario
of limited training data (one-image training) to demonstrate the effect of the
data augmentation on both datasets. Our results significantly showed the
effectiveness of the usage of synthetic MS lesion images. For the ISBI2015
challenge, our one-image model trained using only a single image plus the
synthetic data augmentation strategy showed a performance similar to that
of other CNN methods that were fully trained using the entire training set,
yielding a comparable human expert rater performance. Regarding the longit-
udinal evaluation, MS lesions were generated on only the follow-up scans. The
follow-up image with the synthetic lesions with the untouched baseline were
used as data augmentation to increase the longitudinal MS lesion detection
performance. We released a public version of the proposed method that can
be downloaded for free from our research team web page 2. Furthermore, this
entire analysis has been published in the following paper:

Paper published in the IEEE Access
Title: Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder
U-NET.
Volume: 7, Pages: 25171-25184, Published: February, 2019.
DOI: 10.1109/ACCESS.2019.2900198
[JCR CSIS IF 4.098, Q1(23/155)]

6.2 Future work

The analysis of brain MR images for MS patients is a complex topic involving several
aspects and multiple research lines. This notion is exemplified in this PhD thesis
by the several steps that are involved in the new T2-w MS lesion detection process.
Furthermore, some of the concepts applied to MS patients can be applied to other

2https://github.com/NIC-VICOROB/MS_Lesions_Generator
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MRI fields or can be studied further. Besides this, other interesting topics arise from
the needs of current clinical practice for MS patients.

Hence, future directions are presented in two categories: those related to improve
our proposal, and long term future research lines departing from this thesis.

6.2.1 Short-term proposal improvements

In this PhD thesis, we presented two supervised methods for the detection of the new
T2-w MS lesions. One was based on the conventional machine learning techniques
and the other was based on deep learning. The two methods were validated on
in-house clinical dataset from our collaborating hospitals. However, in chapter 4
we analyzed the generalization and the performance of the proposed approach when
tested in images from a different scanner and image acquisition protocol. Our future
work is to increase the longitudinal database to validate the two proposals again for
various scenarios like training and testing on data from other scanners.

As seen in chapter 4, the sensitivity of CNN methods was remarkably lower in the
infratentorial region due to a lack of training data. A short-term improvement could
be increasing the sensitivity of these methods in the infratentorial region by obtain-
ing more samples containing infratentorial lesions or by generating infratentorial
synthetic lesions using our MS generator with the aim to improve the performance
of the proposed methods at that location. We believe that more training data or the
use of synthetic MS data may increase the sensitivity of the methods while redu-
cing FP lesions. As Generative adversarial networks (GANs) have been used widely
to provide anatomically-plausible and diverse samples for augmentation and other
applications [272, 273], another short-term work is to use GANs to generate MR
images with synthetic MS lesions and to compare this GAN-based model with our
Encoder-Decoder-based MS lesion generator model proposed in chapter 5.

Another short-term improvement could be to build an automated pipeline that
allows complete control on lesions quantities, volumes, and location. One way might
be to build a lesion database which contains for each lesion the information of GT,
8 intensity level mask, size, and location. The automated pipeline could generate
random lesions at specified regions with specified lesion load. Furthermore, an active
shape model could be used to learn the shape of the lesions at each region. The
model could be used to generate variability in the lesions. This model could be
integrated to our MS lesion generator to be able to automatically generate synthetic
lesions at specific regions.

6.2.2 Future research lines

In the long term, there are several new research lines departing from this PhD thesis
that could be studied in our research group. As already seen during the develop-
ment of this thesis, there is a lack of public longitudinal databases of MS patients
with both manual lesion annotations in baseline and the different time points on



Chapter 6. Conclusions and future work 118

which automatic segmentation algorithms can be trained and tested. Therefore, the
construction of a standardized and publicly available dataset of patients with differ-
ent diseases, including MS, with reliable annotations of lesions, would not only be
of special interest for training and testing all the methods presented in this thesis,
but also very useful to the scientific community. Furthermore, with the increasing
success of the deep learning approaches for medical image analysis, which need large
amounts of data for their training and testing, the creation of the mentioned data-
base would be an incentive for new method proposals able to achieve more accurate
results.

Moreover, the methods and concepts presented here could also be applied to the
study of other diseases with similar properties. A deeper study involving different
diseases and lesion properties would be interesting. Patients with lupus, with stroke,
or with WM hyperintensities may be interesting to study.

Finally, the ultimate future goal should be to provide state-of-the-art tools for
the collaborating hospitals involved in these research projects that may be useful
not only to diagnose and monitor the progression of this disease, but also to evaluate
new treatments for MS patients. Related to that, the tools developed in this thesis
should be integrated with other tools developed in our group in order to implement
this complete system capable of providing robust and useful biomarkers in MS such
as the number of lesions, lesion volume, brain tissue volume or brain atrophy.
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